"원시근(primitive root)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 16개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>간단한 소개</h5>
+
==개요==
  
*  군 <math>(\mathbb{Z}/n\mathbb{Z})^\times</math> 는 언제 순환군이 될까?<br>
+
*  군 <math>(\mathbb{Z}/n\mathbb{Z})^\times</math> 는 언제 순환군이 될까?
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>의 정의에 대해서는 [[합동식과 군론]] 을 참조
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>의 정의에 대해서는 [[합동식과 군론]] 을 참조
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 순환군이다 <math>\iff</math><math>n= 1, 2, 4, p^k,2 p^k</math> 이 때 p는 홀수인 소수
+
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 순환군이다 <math>\iff</math><math>n= 1, 2, 4, p^k,2 p^k</math> 이 때 p는 홀수인 소수
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo <em>n</em>)이라 부름
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo <em>n</em>)이라 부름
 +
* [[소수에 대한 원시근(primitive root) 목록]]
  
 
+
  
 
+
  
<h5>하위주제들</h5>
+
==역사==
  
 
+
* [[수학사 연표]]
  
 
+
  
 
 
 
==== 하위페이지 ====
 
 
* [[1964250|0 토픽용템플릿]]<br>
 
** [[2060652|0 상위주제템플릿]]<br>
 
 
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
 
 
 
 
<h5>관련된 단원</h5>
 
 
 
 
 
 
 
 
<h5>많이 나오는 질문</h5>
 
 
*  네이버 지식인<br>
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
<h5>관련된 고교수학 또는 대학수학</h5>
 
  
 +
==관련된 항목들==
 +
* [[윌슨의 정리]]
 
* [[추상대수학]]
 
* [[추상대수학]]
 
* [[초등정수론]]
 
* [[초등정수론]]
* [[초등정수론의 토픽들]]
+
* [[분수와 순환소수]]
  
 
+
  
<h5>관련된 다른 주제들</h5>
+
  
 
+
==수학용어번역==
  
 
+
* {{학술용어집|url=primitive}}
  
<h5>관련도서 및 추천도서</h5>
+
  
* 도서내검색<br>
+
   
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
==사전 형태의 자료==
 
 
<h5>참고할만한 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Primitive_root_modulo_n
 
* http://en.wikipedia.org/wiki/Primitive_root_modulo_n
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
네이버 뉴스 검색 (키워드 수정)
 
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
<h5>블로그</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
  
<h5>이미지 검색</h5>
 
  
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
+
==관련논문==
* http://images.google.com/images?q=
+
* McGown, Kevin, Enrique Treviño, and Tim Trudgian. “Resolving Grosswald’s Conjecture on GRH.” arXiv:1508.05182 [math], August 21, 2015. http://arxiv.org/abs/1508.05182.
* [http://www.artchive.com/ http://www.artchive.com]
 
  
 
 
  
<h5>동영상</h5>
+
[[분류:초등정수론]]
 +
[[분류:정수론]]
  
* http://www.youtube.com/results?search_type=&search_query=
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q948010 Q948010]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'primitive'}, {'LOWER': 'root'}, {'LOWER': 'modulo'}, {'LEMMA': 'n'}]
 +
* [{'LOWER': 'primitive'}, {'LEMMA': 'root'}]

2021년 2월 17일 (수) 04:55 기준 최신판

개요

  • 군 \((\mathbb{Z}/n\mathbb{Z})^\times\) 는 언제 순환군이 될까?
    • \((\mathbb{Z}/n\mathbb{Z})^\times\)의 정의에 대해서는 합동식과 군론 을 참조
    • \((\mathbb{Z}/n\mathbb{Z})^\times\)는 순환군이다 \(\iff\)\(n= 1, 2, 4, p^k,2 p^k\) 이 때 p는 홀수인 소수
    • \((\mathbb{Z}/n\mathbb{Z})^\times\)가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo n)이라 부름
  • 소수에 대한 원시근(primitive root) 목록



역사



관련된 항목들



수학용어번역



사전 형태의 자료


관련논문

  • McGown, Kevin, Enrique Treviño, and Tim Trudgian. “Resolving Grosswald’s Conjecture on GRH.” arXiv:1508.05182 [math], August 21, 2015. http://arxiv.org/abs/1508.05182.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'primitive'}, {'LOWER': 'root'}, {'LOWER': 'modulo'}, {'LEMMA': 'n'}]
  • [{'LOWER': 'primitive'}, {'LEMMA': 'root'}]