"이항급수와 이항정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “네이버(.*)]” 문자열을 “” 문자열로)
 
(같은 사용자의 중간 판 4개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[이항급수와 이항정리]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 +
* [[이항계수와 조합|이항계수]]
 +
:<math>(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k}  x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots</math>
 +
:<math>\frac{1}{(1-z)^a}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)</math>
  
<math>(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots</math>
+
*  여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>
 
 
* [[이항계수와 조합|이항계수]]<br>
 
 
 
<math>\frac{1}{(1-z)^a}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)</math>
 
  
* 여기서  <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math><br>
+
   
  
 
+
 
 
 
 
  
 
==예==
 
==예==
27번째 줄: 16번째 줄:
 
<math>\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n=1+2 z+6 z^2+20 z^3+70 z^4+252 z^5+924 z^6+3432 z^7+12870 z^8+48620 z^9+184756 z^{10}+\cdots</math>
 
<math>\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n=1+2 z+6 z^2+20 z^3+70 z^4+252 z^5+924 z^6+3432 z^7+12870 z^8+48620 z^9+184756 z^{10}+\cdots</math>
  
 
+
  
 
+
  
 
+
  
 
==역사==
 
==역사==
  
 
* [http://www.google.com/search?hl=en&tbs=tl:1&q=newton+binomial http://www.google.com/search?hl=en&tbs=tl:1&q=newton+binomia]
 
* [http://www.google.com/search?hl=en&tbs=tl:1&q=newton+binomial http://www.google.com/search?hl=en&tbs=tl:1&q=newton+binomia]
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
+
  
 
+
  
 
==메모==
 
==메모==
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
 +
* [[이항계수와 조합]]
 +
* [[Q-이항정리]]
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYzg0NjZhOWMtOGUxNC00YjdkLTgxMTQtN2ExM2Y2NmIzZmNl&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYzg0NjZhOWMtOGUxNC00YjdkLTgxMTQtN2ExM2Y2NmIzZmNl&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
 
* [[매스매티카 파일 목록]]
 
 
 
 
 
 
 
 
==수학용어번역==
 
  
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
  
 
+
==사전 형태의 자료==
 
+
* http://en.wikipedia.org/wiki/binomial_theorem
==사전 형태의 자료==
 
 
 
* http://ko.wikipedia.org/wiki/
 
* [http://en.wikipedia.org/wiki/binomial_theorem ]http://en.wikipedia.org/wiki/binomial_theorem
 
 
* http://en.wikipedia.org/wiki/Binomial_series
 
* http://en.wikipedia.org/wiki/Binomial_series
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
==관련논문==
 
  
* http://www.jstor.org/action/doBasicSearch?Query=
+
* http://dx.doi.org/
 
  
 
 
  
  
 
+
 
 
 
 
 
 
  
 
==블로그==
 
==블로그==
112번째 줄: 67번째 줄:
  
 
[[분류:조합수학]]
 
[[분류:조합수학]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q26708 Q26708]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'binomial'}, {'LEMMA': 'theorem'}]

2021년 2월 17일 (수) 04:57 기준 최신판

개요

\[(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots\] \[\frac{1}{(1-z)^a}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)\]

  • 여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)



\(\sqrt{1+x}=\sum _{k=0}^{\infty } \binom{\frac{1}{2}}{k} x^k=1+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}-\frac{5 x^4}{128}+\frac{7 x^5}{256}-\frac{21 x^6}{1024}+\frac{33 x^7}{2048}-\frac{429 x^8}{32768}+\frac{715 x^9}{65536}-\frac{2431 x^{10}}{262144}+\cdots\)

\(\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n=1+2 z+6 z^2+20 z^3+70 z^4+252 z^5+924 z^6+3432 z^7+12870 z^8+48620 z^9+184756 z^{10}+\cdots\)




역사



메모

관련된 항목들



매스매티카 파일 및 계산 리소스



사전 형태의 자료




블로그

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'binomial'}, {'LEMMA': 'theorem'}]