"전자기 포텐셜과 맥스웰 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
* [[전자기 포텐셜과 맥스웰 방정식|포벡터 포텐셜과 맥스웰 방정식]]
+
* 맥스웰 방정식을 포벡터 포텐셜을 이용하여 표현할 수 있다
  
 
+
  
 
+
  
<h5>개요</h5>
+
==기호==
  
* <math>\nabla \cdot \mathbf{B} = 0</math>로부터<br><math>\mathbf{B}=\nabla \times \mathbf{A}</math><br>
+
* [[맥스웰 방정식]] 항목의 '기호' 부분 참조
*  스칼라 포텐셜 <math>\phi</math><br><math>\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi </math><br>
 
  
 
+
  
<h5>기호</h5>
+
  
* 벡터포텐셜 <math>\mathbf{A}=(A_x,A_y,A_z)</math>
+
==맥스웰 방정식의 표현==
* 전기장 <math>\mathbf{E}=(E_x,E_y,E_z)</math>
 
* 자기장 <math>\mathbf{B}=(B_x,B_y,B_z)</math>
 
  
 
+
*  자기장에 대한 가우스 법칙 <math>\nabla \cdot \mathbf{B} = 0</math>로부터:<math>\mathbf{B}=\nabla \times \mathbf{A}</math> 을 만족하는 벡터 포텐셜 <math>\mathbf{A}</math>가 존재한다
 +
*  패러데이 법칙으로부터:<math>\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi </math> 가 되는 스칼라 포텐셜 <math>\phi</math>이 존재한다
  
 
+
*  포텐셜을 통해, 남은 두 개의  [[맥스웰 방정식]] 은 다음과 같이 표현된다:<math>\nabla^2 \varphi + \frac{\partial}{\partial t} \left ( \mathbf \nabla \cdot \mathbf A \right ) = - \frac{\rho}{\varepsilon_0}</math> (전기장에 대한 가우스 법칙):<math>\left ( \nabla^2 \mathbf A - \frac{1}{c^2} \frac{\partial^2 \mathbf A}{\partial t^2} \right ) - \mathbf \nabla \left ( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right ) = - \mu_0 \mathbf J</math> (앙페르-패러데이 법칙)
  
<h5>포벡터 포텐셜</h5>
+
  
* <math>A_{\alpha} = \left(\phi, -\mathbf{A} \right)=(\phi,-A_{x},-A_{y},-A_{z})</math>, <math>\alpha=0,1,2,3</math>
+
  
 
+
==로렌츠 게이지==
  
 
+
*  로렌츠 게이지 하에서, 맥스웰 방정식은 다음과 같이 표현된다:<math>\nabla^2 \mathbf A - \frac 1 {c^2} \frac{\partial^2 \mathbf A}{\partial t^2} = - \mu_0 \mathbf J</math>:<math>\nabla^2 \varphi - \frac 1 {c^2} \frac{\partial^2 \varphi}{\partial t^2} = - \frac{\rho}{\varepsilon_0}</math>
 +
* http://en.wikipedia.org/wiki/Lorenz_gauge_condition
  
<h5>맥스웰 방정식의 표현</h5>
+
  
* 포텐셜을 통해, [[맥스웰 방정식]] 은 다음과 같이 표현된다<br><math>\nabla^2 \varphi + \frac{\partial}{\partial t} \left ( \mathbf \nabla \cdot \mathbf A \right ) = - \frac{\rho}{\varepsilon_0}</math><br><math>\left ( \nabla^2 \mathbf A - \frac{1}{c^2} \frac{\partial^2 \mathbf A}{\partial t^2} \right ) - \mathbf \nabla \left ( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right ) = - \mu_0 \mathbf J</math><br>
+
   
  
 
+
==포벡터 포텐셜==
  
 
+
* <math>A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})</math>, <math>\alpha=0,1,2,3</math>
  
<h5>전자기 텐서(electromagnetic tensor)</h5>
+
  
*  
+
  
 
+
==전자기 텐서(electromagnetic tensor)==
  
 
+
* <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math>
 +
* [[전자기 텐서와 맥스웰 방정식]] 항목 참조
  
<h5>역사</h5>
+
  
 
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
==메모==
* [[수학사연표 (역사)|수학사연표]]
 
  
 
+
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
  
*  단어사전<br>
+
==매스매티카 파일 및 계산 리소스==
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxMC1uajRHRjFzb0U/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxMC1uajRHRjFzb0U/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
+
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Electromagnetic_four-potential
 
* http://en.wikipedia.org/wiki/Electromagnetic_four-potential
 
* http://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field#Potential_field_approach
 
* http://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field#Potential_field_approach
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
  
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
  
 
+
==리뷰논문, 에세이, 강의노트==
  
 
+
  
 
+
  
<h5>관련논문</h5>
+
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
+
  
<h5>관련도서</h5>
+
 +
[[분류:수리물리학]]
  
도서내검색<br>
+
==메타데이터==
** http://books.google.com/books?q=
+
===위키데이터===
** http://book.daum.net/search/contentSearch.do?query=
+
* ID : [https://www.wikidata.org/wiki/Q1203816 Q1203816]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'lorenz'}, {'LOWER': 'gauge'}, {'LEMMA': 'condition'}]
 +
* [{'LOWER': 'lorenz'}, {'LEMMA': 'gauge'}]

2021년 2월 17일 (수) 04:58 기준 최신판

개요

  • 맥스웰 방정식을 포벡터 포텐셜을 이용하여 표현할 수 있다



기호



맥스웰 방정식의 표현

  • 자기장에 대한 가우스 법칙 \(\nabla \cdot \mathbf{B} = 0\)로부터\[\mathbf{B}=\nabla \times \mathbf{A}\] 을 만족하는 벡터 포텐셜 \(\mathbf{A}\)가 존재한다
  • 패러데이 법칙으로부터\[\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \] 가 되는 스칼라 포텐셜 \(\phi\)이 존재한다
  • 포텐셜을 통해, 남은 두 개의 맥스웰 방정식 은 다음과 같이 표현된다\[\nabla^2 \varphi + \frac{\partial}{\partial t} \left ( \mathbf \nabla \cdot \mathbf A \right ) = - \frac{\rho}{\varepsilon_0}\] (전기장에 대한 가우스 법칙)\[\left ( \nabla^2 \mathbf A - \frac{1}{c^2} \frac{\partial^2 \mathbf A}{\partial t^2} \right ) - \mathbf \nabla \left ( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right ) = - \mu_0 \mathbf J\] (앙페르-패러데이 법칙)



로렌츠 게이지

  • 로렌츠 게이지 하에서, 맥스웰 방정식은 다음과 같이 표현된다\[\nabla^2 \mathbf A - \frac 1 {c^2} \frac{\partial^2 \mathbf A}{\partial t^2} = - \mu_0 \mathbf J\]\[\nabla^2 \varphi - \frac 1 {c^2} \frac{\partial^2 \varphi}{\partial t^2} = - \frac{\rho}{\varepsilon_0}\]
  • http://en.wikipedia.org/wiki/Lorenz_gauge_condition



포벡터 포텐셜

  • \(A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})\), \(\alpha=0,1,2,3\)



전자기 텐서(electromagnetic tensor)



메모



관련된 항목들

매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'lorenz'}, {'LOWER': 'gauge'}, {'LEMMA': 'condition'}]
  • [{'LOWER': 'lorenz'}, {'LEMMA': 'gauge'}]