전자기 포텐셜과 맥스웰 방정식
둘러보기로 가기
검색하러 가기
개요
- 맥스웰 방정식을 포벡터 포텐셜을 이용하여 표현할 수 있다
기호
- 맥스웰 방정식 항목의 '기호' 부분 참조
맥스웰 방정식의 표현
- 자기장에 대한 가우스 법칙 \(\nabla \cdot \mathbf{B} = 0\)로부터\[\mathbf{B}=\nabla \times \mathbf{A}\] 을 만족하는 벡터 포텐셜 \(\mathbf{A}\)가 존재한다
- 패러데이 법칙으로부터\[\mathbf{E}=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \] 가 되는 스칼라 포텐셜 \(\phi\)이 존재한다
- 포텐셜을 통해, 남은 두 개의 맥스웰 방정식 은 다음과 같이 표현된다\[\nabla^2 \varphi + \frac{\partial}{\partial t} \left ( \mathbf \nabla \cdot \mathbf A \right ) = - \frac{\rho}{\varepsilon_0}\] (전기장에 대한 가우스 법칙)\[\left ( \nabla^2 \mathbf A - \frac{1}{c^2} \frac{\partial^2 \mathbf A}{\partial t^2} \right ) - \mathbf \nabla \left ( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right ) = - \mu_0 \mathbf J\] (앙페르-패러데이 법칙)
로렌츠 게이지
- 로렌츠 게이지 하에서, 맥스웰 방정식은 다음과 같이 표현된다\[\nabla^2 \mathbf A - \frac 1 {c^2} \frac{\partial^2 \mathbf A}{\partial t^2} = - \mu_0 \mathbf J\]\[\nabla^2 \varphi - \frac 1 {c^2} \frac{\partial^2 \varphi}{\partial t^2} = - \frac{\rho}{\varepsilon_0}\]
- http://en.wikipedia.org/wiki/Lorenz_gauge_condition
포벡터 포텐셜
- \(A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})\), \(\alpha=0,1,2,3\)
전자기 텐서(electromagnetic tensor)
- \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
- 전자기 텐서와 맥스웰 방정식 항목 참조
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Electromagnetic_four-potential
- http://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field#Potential_field_approach
리뷰논문, 에세이, 강의노트
메타데이터
위키데이터
- ID : Q1203816
Spacy 패턴 목록
- [{'LOWER': 'lorenz'}, {'LOWER': 'gauge'}, {'LEMMA': 'condition'}]
- [{'LOWER': 'lorenz'}, {'LEMMA': 'gauge'}]