"다중 제타 값"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→메타데이터) |
||
(같은 사용자의 중간 판 62개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * [[리만제타함수]]의 다변수 일반화 | + | * [[리만제타함수]]의 다변수 일반화 <math>\zeta(s_1, \ldots, s_k)</math> |
− | * | + | * <math>s_i</math> 가 양의 정수일 때, 오일러 합이라 불림 |
− | * 정수론의 중요한 | + | * 정수론의 중요한 주제 |
+ | * 물리에서 산란 진폭 등의 계산에서 등장 | ||
==정의== | ==정의== | ||
+ | * <math>s_1>1, \cdots, s_k</math>가 양의 정수라 하자 | ||
+ | * 다중 제타 값을 다음과 같이 정의 | ||
:<math> | :<math> | ||
− | \zeta(s_1, \ldots, s_k) = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, | + | \zeta(s_1, \ldots, s_k) : = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, |
\!</math> | \!</math> | ||
− | * | + | * <math>w=s_1+\cdots+s_k</math>를 weight, <math>k</math>를 depth로 부른다 |
− | |||
==이중 제타== | ==이중 제타== | ||
* 오일러의 공식 | * 오일러의 공식 | ||
− | + | :<math>\zeta(2,1)=\zeta(3)</math> | |
− | + | ||
==여러 가지 관계식== | ==여러 가지 관계식== | ||
===double shuffle=== | ===double shuffle=== | ||
− | + | ;정리 | |
− | + | <math>m,n>1</math> 일 때, :<math>\zeta(m)\zeta(n)=\zeta(m,n)+\zeta(n,m)+\zeta(m+n)</math> | |
− | + | ;증명 | |
+ | :<math> | ||
\zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} | \zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} | ||
− | + | </math> | |
===오일러 분해 공식=== | ===오일러 분해 공식=== | ||
− | * | + | * <math>r,s>1</math> 일 때, |
− | + | :<math>\zeta(r)\zeta(s)=\sum_{a=0}^{s-1}\binom{a+r-1}{a}\zeta(r+a,s-a)+\sum_{a=0}^{r-1}\binom{a+s-1}{a}\zeta(s+a,r-a)</math> | |
− | + | * 예 | |
+ | :<math> | ||
+ | \zeta(2) \zeta(3)=\zeta(2,3)+3\zeta(3,2)+6 \zeta(4,1) | ||
+ | </math> | ||
===기타=== | ===기타=== | ||
* 다음이 성립한다 | * 다음이 성립한다 | ||
− | + | :<math> | |
− | 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{ | + | 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{n-2}\zeta(n-i)\zeta(i+1) |
− | + | </math> | |
* 예 | * 예 | ||
− | + | :<math> | |
− | + | \begin{align} | |
+ | \zeta(2,1)&=\zeta(3) \\ | ||
+ | 2\zeta(3,1)&=-\zeta(2)^2+3\zeta(4) \\ | ||
+ | \zeta(4,1)&=2\zeta(5)-\zeta(2)\zeta(3) \\ | ||
+ | 2\zeta(5,1)&=-\zeta(3)^2-2\zeta(2)\zeta(4)+5\zeta(6) | ||
+ | \end{align} | ||
+ | </math> | ||
+ | ==다중 제타 값의 공간== | ||
+ | * 주어진 무게를 갖는 다중 제타 값이 이루는 유리수체 위에서 정의된 벡터 공간의 차원 | ||
+ | * <math>\{a_n\}_{n=1}^{\infty}</math>를 <math>a_n = a_{n-2} + a_{n-3}</math>, <math>a_0=1, a_1=a_2=0</math>. | ||
+ | * 이를 파도반 수열이라 한다 | ||
+ | * 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897 | ||
+ | * Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. | ||
+ | ===테이블=== | ||
+ | ;추측 | ||
+ | 주어진 무게 <math>s</math>의 다중 제타 값으로 생성되는 <math>\mathbb{Q}</math>-벡터 공간은 다음과 같은 기저를 갖는다 | ||
+ | \begin{array}{c|c} | ||
+ | s & \\ | ||
+ | \hline | ||
+ | 2 & \zeta_2 \\ | ||
+ | 3 & \zeta_3 \\ | ||
+ | 4 & \zeta_2^2 \\ | ||
+ | 5 & \zeta_5,\zeta_2 \zeta_3 \\ | ||
+ | 6 & \zeta_3^2,\zeta_2^3 \\ | ||
+ | 7 & \zeta_7,\zeta_2 \zeta_5,\zeta_2^2 \zeta_3 \\ | ||
+ | 8 & \zeta_{5,3},\zeta_3 \zeta_5,\zeta_2 \zeta_3^2,\zeta_2^4 \\ | ||
+ | 9 & \zeta_9,\zeta_2 \zeta_7,\zeta_2^2 \zeta_5,\zeta_3^3,\zeta_2^3 \zeta_3 \\ | ||
+ | 10 & \zeta_{7,3},\zeta_2 \zeta_{5,3},\zeta_3 \zeta_7,\zeta_5^2,\zeta_2 \zeta_3 \zeta_5,\zeta_2^2 \zeta_3^2,\zeta_2^5 \\ | ||
+ | |||
+ | \end{array} | ||
+ | |||
+ | ==테이블== | ||
+ | ===이중 제타 값=== | ||
+ | :<math> | ||
+ | \begin{array}{c|c|c} | ||
+ | \zeta (2,1) & 1.2021 & \zeta (3) \\ | ||
+ | \zeta (2,2) & 0.81174 & \frac{\pi ^4}{120} \\ | ||
+ | \zeta (2,3) & 0.71157 & \frac{9 \zeta (5)}{2}-\frac{\pi ^2 \zeta (3)}{3} \\ | ||
+ | \zeta (2,4) & 0.67452 & \frac{5 \pi ^6}{2268}-\zeta (3)^2 \\ | ||
+ | \zeta (2,5) & 0.65875 & -\frac{\pi ^4 \zeta (3)}{45}+10 \zeta (7)-\frac{2 \pi ^2 \zeta (5)}{3} \\ | ||
+ | \zeta (2,6) & 0.65157 & \frac{\pi ^8}{14175}-\zeta (6,2) \\ | ||
+ | \zeta (2,7) & 0.64817 & -\frac{1}{945} 2 \pi ^6 \zeta (3)-\pi ^2 \zeta (7)+\frac{35 \zeta (9)}{2}-\frac{2 \pi ^4 \zeta (5)}{45} \\ | ||
+ | \zeta (3,1) & 0.27058 & \frac{\pi ^4}{360} \\ | ||
+ | \zeta (3,2) & 0.22881 & \frac{1}{2} \left(\pi ^2 \zeta (3)-11 \zeta (5)\right) \\ | ||
+ | \zeta (3,3) & 0.21380 & \frac{\zeta (3)^2}{2}-\frac{\pi ^6}{1890} \\ | ||
+ | \zeta (3,4) & 0.20751 & \frac{\pi ^4 \zeta (3)}{90}+\frac{5 \pi ^2 \zeta (5)}{3}-18 \zeta (7) \\ | ||
+ | \zeta (3,5) & 0.20466 & -4 \zeta (3) \zeta (5)+\frac{5 \zeta (6,2)}{2}+\frac{41 \pi ^8}{75600} \\ | ||
+ | \zeta (3,6) & 0.20332 & \frac{\pi ^6 \zeta (3)}{945}+\frac{\pi ^4 \zeta (5)}{15}+\frac{7 \pi ^2 \zeta (7)}{2}-\frac{85 \zeta (9)}{2} \\ | ||
+ | \zeta (4,1) & 0.096551 & 2 \zeta (5)-\frac{\pi ^2 \zeta (3)}{6} \\ | ||
+ | \zeta (4,2) & 0.088483 & \zeta (3)^2-\frac{4 \pi ^6}{2835} \\ | ||
+ | \zeta (4,3) & 0.085160 & 17 \zeta (7)-\frac{5 \pi ^2 \zeta (5)}{3} \\ | ||
+ | \zeta (4,4) & 0.083673 & \frac{\pi ^8}{113400} \\ | ||
+ | \zeta (4,5) & 0.082978 & \frac{1}{90} \left(-4 \pi ^4 \zeta (5)-525 \pi ^2 \zeta (7)+5625 \zeta (9)\right) \\ | ||
+ | \zeta (5,1) & 0.040537 & \frac{\pi ^6-630 \zeta (3)^2}{1260} \\ | ||
+ | \zeta (5,2) & 0.038575 & \frac{\pi ^4 \zeta (3)}{45}+\frac{5 \pi ^2 \zeta (5)}{6}-11 \zeta (7) \\ | ||
+ | \zeta (5,3) & 0.037708 & 5 \zeta (3) \zeta (5)-\frac{5 \zeta (6,2)}{2}-\frac{7 \pi ^8}{10800} \\ | ||
+ | \zeta (5,4) & 0.037305 & \frac{1}{18} \left(\pi ^4 \zeta (5)+105 \pi ^2 \zeta (7)-1143 \zeta (9)\right) \\ | ||
+ | \zeta (6,1) & 0.018356 & -\frac{\pi ^4 \zeta (3)}{90}+3 \zeta (7)-\frac{\pi ^2 \zeta (5)}{6} \\ | ||
+ | \zeta (6,2) & 0.017820 & \zeta (6,2) \\ | ||
+ | \zeta (6,3) & 0.017573 & -\frac{\pi ^4 \zeta (5)}{15}+\frac{83 \zeta (9)}{2}-\frac{7 \pi ^2 \zeta (7)}{2} \\ | ||
+ | \end{array} | ||
+ | </math> | ||
+ | |||
+ | ==메모== | ||
+ | * http://math.unice.fr/~brunov/GdT/The%20Algebra%20Of%20Multiple%20Zeta%20Values.pdf | ||
+ | * [http://www.usna.edu/Users/math/meh/biblio.html REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS] | ||
+ | * MZV | ||
==관련된 항목들== | ==관련된 항목들== | ||
45번째 줄: | 117번째 줄: | ||
==계산 리소스== | ==계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxU0NmSDg0cGNyYmM/edit | ||
* https://oeis.org/A000931 | * https://oeis.org/A000931 | ||
* [[Multisum]] | * [[Multisum]] | ||
− | + | * Anzai, C., and Y. Sumino. ‘Algorithms to Evaluate Multiple Sums for Loop Computations’. arXiv:1211.5204 [hep-Ph, Physics:hep-Th, Physics:math-Ph], 22 November 2012. http://arxiv.org/abs/1211.5204. | |
+ | ** http://www.tuhep.phys.tohoku.ac.jp/~program/ | ||
==사전 형태의 자료== | ==사전 형태의 자료== | ||
* http://en.wikipedia.org/wiki/Multiple_zeta_function | * http://en.wikipedia.org/wiki/Multiple_zeta_function | ||
+ | |||
+ | |||
+ | |||
+ | ==리뷰, 에세이, 강의노트== | ||
+ | * Schneps, Leila. ‘ARI, GARI, Zig and Zag: An Introduction to Ecalle’s Theory of Multiple Zeta Values’. arXiv:1507.01534 [math], 6 July 2015. http://arxiv.org/abs/1507.01534. | ||
+ | * Brown, Francis. “Motivic Periods and the Projective Line Minus Three Points.” arXiv:1407.5165 [math], July 19, 2014. http://arxiv.org/abs/1407.5165. | ||
+ | * http://www.math.jussieu.fr/~leila/MIT4B.pdf | ||
+ | * [http://www.maths.bris.ac.uk/events/meetings/uploads/4159LeilaSchnepsII.pdf Survey of the theory of multiple zeta values], Leila Schneps | ||
+ | * Pierre Deligne ''Multizetas, d´aprés Francis Brown'', Seminaire Bourbaki, Nr. 1048, January 2012, http://www.math.ias.edu/files/deligne/012312MultiZetas.pdf | ||
+ | |||
+ | ==관련논문== | ||
+ | * Masanobu Kaneko, Shuji Yamamoto, A new integral-series identity of multiple zeta values and regularizations, arXiv:1605.03117 [math.NT], May 10 2016, http://arxiv.org/abs/1605.03117 | ||
+ | * Benjamin Enriquez, Hidekazu Furusho, A stabilizer interpretation of double shuffle Lie algebras, arXiv:1605.02838 [math.QA], May 10 2016, http://arxiv.org/abs/1605.02838 | ||
+ | * Johannes Broedel, Nils Matthes, Oliver Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, arXiv:1507.02254 [hep-th], July 08 2015, http://arxiv.org/abs/1507.02254, 10.1088/1751-8113/49/15/155203, http://dx.doi.org/10.1088/1751-8113/49/15/155203, J.Phys. A49 (2016) 155203 | ||
+ | * Zhonghua Li, Chen Qin, Stuffle product formulas of multiple zeta values, arXiv:1603.08332[math.NT], March 28 2016, http://arxiv.org/abs/1603.08332v1 | ||
+ | * Zhonghua Li, Chen Qin, Shuffle product formulas of multiple zeta values, http://arxiv.org/abs/1603.05786v1 | ||
+ | * Michael E. Hoffman, On Multiple Zeta Values of Even Arguments, http://arxiv.org/abs/1205.7051v3 | ||
+ | * Ding Ma, Koji Tasaka, On triple zeta values of even weight and their connections with period polynomials, http://arxiv.org/abs/1603.01013v1 | ||
+ | * Vieru, Andrei. “Analytic Renormalization of Multiple Zeta Functions. Geometry and Combinatorics of Generalized Euler Reflection Formula for MZV.” arXiv:1601.04703 [math], January 18, 2016. http://arxiv.org/abs/1601.04703. | ||
+ | * Jarossay, David. “Depth Reductions for Associators.” arXiv:1601.01161 [math], January 6, 2016. http://arxiv.org/abs/1601.01161. | ||
+ | * Murahara, Hideki. “Derivation Relations for Finite Multiple Zeta Values.” arXiv:1512.08696 [math], December 29, 2015. http://arxiv.org/abs/1512.08696. | ||
+ | * Ebrahimi-Fard, Kurusch, Dominique Manchon, and Johannes Singer. “Duality and (q-)multiple Zeta Values.” arXiv:1512.00753 [math], December 2, 2015. http://arxiv.org/abs/1512.00753. | ||
+ | * Zerbini, Federico. “Single-Valued Multiple Zeta Values in Genus 1 Superstring Amplitudes.” arXiv:1512.05689 [hep-Th], December 17, 2015. http://arxiv.org/abs/1512.05689. | ||
+ | * Panzer, Erik. “The Parity Theorem for Multiple Polylogarithms.” arXiv:1512.04482 [math], December 14, 2015. http://arxiv.org/abs/1512.04482. | ||
+ | * Singer, Johannes, and Jianqiang Zhao. “Finite and Symmetrized Colored Multiple Zeta Values.” arXiv:1512.03691 [math], December 11, 2015. http://arxiv.org/abs/1512.03691. | ||
+ | * Ebrahimi-Fard, Kurusch, Dominique Manchon, Johannes Singer, and Jianqiang Zhao. “Renormalisation Group for Multiple Zeta Values.” arXiv:1511.06720 [math], November 20, 2015. http://arxiv.org/abs/1511.06720. | ||
+ | * Ma, Ding. “Connections between Double Zeta Values Relative to <math>\mu_N</math>, Hecke Operators <math>T_N</math>, and Newforms of Level <math>\Gamma_0(N)</math> for <math>N=2,3</math>.” arXiv:1511.06102 [math], November 19, 2015. http://arxiv.org/abs/1511.06102. | ||
+ | * Ebrahimi-Fard, Kurusch, Dominique Manchon, Johannes Singer, and Jianqiang Zhao. “Transfer Group for Renormalized Multiple Zeta Values.” arXiv:1510.09159 [math], October 30, 2015. http://arxiv.org/abs/1510.09159. | ||
+ | * Chang, Chieh-Yu. “Linear Relations among Double Zeta Values in Positive Characteristic.” arXiv:1510.06519 [math], October 22, 2015. http://arxiv.org/abs/1510.06519. | ||
+ | * Dotzel, Michael, and Ivan Horozov. “Shuffle Product for Multiple Dedekind Zeta Values over Imaginary Quadratic Fields.” arXiv:1509.08400 [math], September 28, 2015. http://arxiv.org/abs/1509.08400. | ||
+ | * Matthes, Nils. “Elliptic Double Zeta Values.” arXiv:1509.08760 [math], September 29, 2015. http://arxiv.org/abs/1509.08760. | ||
+ | * Furusho, Hidekazu, Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura. “Desingularization of Complex Multiple Zeta-Functions.” arXiv:1508.06920 [math], August 27, 2015. http://arxiv.org/abs/1508.06920. | ||
+ | * Broedel, Johannes, Nils Matthes, and Oliver Schlotterer. ‘Relations between Elliptic Multiple Zeta Values and a Special Derivation Algebra’. arXiv:1507.02254 [hep-Th], 8 July 2015. http://arxiv.org/abs/1507.02254. | ||
+ | * Oyama, Kojiro. ‘Ohno’s Relation for Finite Multiple Zeta Values’. arXiv:1506.00833 [math], 2 June 2015. http://arxiv.org/abs/1506.00833. | ||
+ | * Kaneko, Masanobu, and Mika Sakata. ‘On Multiple Zeta Values of Extremal Height’. arXiv:1505.01014 [math], 5 May 2015. http://arxiv.org/abs/1505.01014. | ||
+ | * Zudilin, Wadim. ‘On a Family of Polynomials Related to <math>\zeta(2,1)=\zeta(3)</math>’. arXiv:1504.07696 [math-Ph], 28 April 2015. http://arxiv.org/abs/1504.07696. | ||
+ | * Furusho, Hidekazu. “On Relations among Multiple Zeta Values Obtained in Knot Theory.” arXiv:1501.06638 [math], January 26, 2015. http://arxiv.org/abs/1501.06638. | ||
+ | * Brown, Francis. “Multiple Modular Values for SL_2(Z).” arXiv:1407.5167 [math], July 19, 2014. http://arxiv.org/abs/1407.5167. | ||
+ | * Zhao, Jianqiang. “Uniform Approach to Double Shuffle and Duality Relations of Various Q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.” arXiv:1412.8044 [math], December 27, 2014. http://arxiv.org/abs/1412.8044. | ||
+ | * Zagier, Don. ‘Evaluation of the Multiple Zeta Values zeta(2,...,2,3,2,...,2)’. Annals of Mathematics 175, no. 2 (1 March 2012): 977–1000. doi:10.4007/annals.2012.175.2.11. | ||
+ | * Blümlein, J., D. J. Broadhurst, and J. A. M. Vermaseren. ‘The Multiple Zeta Value Data Mine’. Computer Physics Communications 181, no. 3 (March 2010): 582–625. doi:10.1016/j.cpc.2009.11.007. | ||
+ | * Guo, Li, and Bin Zhang. ‘Renormalization of Multiple Zeta Values’. Journal of Algebra 319, no. 9 (1 May 2008): 3770–3809. doi:10.1016/j.jalgebra.2008.02.003. | ||
+ | * Ihara, Kentaro, Masanobu Kaneko, and Don Zagier. ‘Derivation and Double Shuffle Relations for Multiple Zeta Values’. Compositio Mathematica 142, no. 02 (March 2006): 307–38. doi:10.1112/S0010437X0500182X. | ||
+ | |||
+ | == 노트 == | ||
+ | |||
+ | ===말뭉치=== | ||
+ | # When s 1 , ..., s k are all positive integers (with s 1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums.<ref name="ref_a5b14997">[https://en.wikipedia.org/wiki/Multiple_zeta_function Multiple zeta function]</ref> | ||
+ | # In fact, this appears to be just the simplest of a whole family of similar identities: see the paper "Combinatorial aspects of multiple zeta values" for details.<ref name="ref_3343c3dc">[https://www.usna.edu/Users/math/meh/mult.html Multiple Zeta Values]</ref> | ||
+ | # For more details see the paper "Relations of multiple zeta values and their algebraic expression".<ref name="ref_3343c3dc" /> | ||
+ | # See the talk "Algebraic structures on the set of multiple zeta values" for one approach to this problem.<ref name="ref_3343c3dc" /> | ||
+ | # You can play around with multiple zeta values yourself using the EZFace calculator at CECM (Centre for Experimental and Constructive Mathematics at Simon Fraser University).<ref name="ref_3343c3dc" /> | ||
+ | # They show that the Qvector space spanned by the multiple zeta values is in fact an algebra: a product of linear combinations of numbers of the form (s) is again a linear combination of such numbers.<ref name="ref_bb0d4941">[https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/MZV2011IMSc.pdf Updated mars 2, 2017]</ref> | ||
+ | # Classical theory of multiple zeta values 1.1.<ref name="ref_af2f7b9f">[http://javier.fresan.perso.math.cnrs.fr/mzv.pdf Clay mathematics proceedings]</ref> | ||
+ | # Denition of multiple zeta values 1.3.<ref name="ref_af2f7b9f" /> | ||
+ | # Integral representation of multiple zeta values 1.6.<ref name="ref_af2f7b9f" /> | ||
+ | # Two families of motivic multiple zeta values and Zagiers theorem 5.4.<ref name="ref_af2f7b9f" /> | ||
+ | # Where zeta functions appear in physics as expressions for vacuum amplitudes, so multiple zeta functions appear in expressions for more general scattering amplitudes.<ref name="ref_65de1e12">[https://ncatlab.org/nlab/show/multiple+zeta+values multiple zeta values in nLab]</ref> | ||
+ | # The intricate combinatorics of these becomes often more tractable when re-expressing them as motivic multiple zeta values.<ref name="ref_65de1e12" /> | ||
+ | # It turns out that multiple zeta values are also related to modular forms but that here the relationship is much more mysterious.<ref name="ref_f109bda9">[https://www.maths.ox.ac.uk/node/33789 Multiple zeta values and modular forms]</ref> | ||
+ | # Their observation is subsumed in the far-reaching Broadhurst-Kreimer conjecture which describes the algebraic structure of multiple zeta values entirely in terms of modular forms.<ref name="ref_f109bda9" /> | ||
+ | # In light of the seemingly mysterious relationship between multiple zeta values and period integrals of modular forms, it is natural to ask for a common framework accommodating both objects.<ref name="ref_f109bda9" /> | ||
+ | # In particular, the study of elliptic multiple zeta values should offer a more conceptual explanation of the Broadhurst-Kreimer conjecture.<ref name="ref_f109bda9" /> | ||
+ | # We also discuss some results about multiple zeta values that can be stated in terms of derivations and cyclic derivations of Q〈x,y〉, and we define an action of QSym on Q〈x,y〉 that appears useful.<ref name="ref_6182652b">[https://link.springer.com/chapter/10.1007/0-387-24981-8_4 Algebraic Aspects of Multiple Zeta Values]</ref> | ||
+ | # Finally, we apply the algebraic approach to relations of finite partial sums of multiple zeta value series.<ref name="ref_6182652b" /> | ||
+ | # The multiple zeta value (a1, a2, . . . , ak), with ai positive integers, is dened by (a1, a2, . .<ref name="ref_1d34ad17">[https://www.math.uni-hamburg.de/home/charlton/talks/4_marys_mzv_notes.pdf Multiple zeta values]</ref> | ||
+ | # The sum (cid:80)k i=1 ai of the ai is called weight of the multiple zeta value.<ref name="ref_1d34ad17" /> | ||
+ | # I now want to convince you that multiple zeta values satisfy a huge number of relations.<ref name="ref_1d34ad17" /> | ||
+ | # Weve already seen how the product of two RZVs can be written as a combination of multiple zeta values by multiplying the dening sums.<ref name="ref_1d34ad17" /> | ||
+ | # For , let be the sum of all multiple zeta values with even arguments whose weight is and whose depth is .<ref name="ref_ac4a1a73">[https://www.hindawi.com/journals/jam/2013/802791/ Algorithms for Some Euler-Type Identities for Multiple Zeta Values]</ref> | ||
+ | # The multiple zeta functions have attracted considerable interest in recent years.<ref name="ref_ac4a1a73" /> | ||
+ | # Derivation and extended double shue (EDS) relations for multiple zeta values (MZVs) are proved.<ref name="ref_28713f3b">[https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1112/S0010437X0500182X/fulltext.pdf Compositio math. 142 (2006) 307–338]</ref> | ||
+ | # In recent years, there has been a considerable amount of interest in certain real numbers called multiple zeta values (MZVs).<ref name="ref_28713f3b" /> | ||
+ | # It is based on a simultaneous Padé approximation problem involving certain multiple polylogarithms, which evaluated at the point 1 are multiple zeta values equal to powers of pi.<ref name="ref_c00a97bd">[https://hal.archives-ouvertes.fr/hal-00860302 Multiple zeta values, Padé approximation and Vasilyev's conjecture]</ref> | ||
+ | # At the point 1, this provides a rational linear combination of 1 and multiple zeta values in an extended sense that turn out to be values of the Riemann zeta function at odd integers.<ref name="ref_c00a97bd" /> | ||
+ | # Normally multiple zeta values (MZVs for short) mean the former and are denoted by (k).<ref name="ref_21ade28d">[https://www.kurims.kyoto-u.ac.jp/~prims/pdf/41-2/41-2-14.pdf (cid:1)]</ref> | ||
+ | # They proved that the special values of k(s) at non-positive integers are given by poly-Bernoulli numbers and the values at positive integers are given in terms of multiple zeta values.<ref name="ref_21ade28d" /> | ||
+ | # Multiple zeta values and functions are defined by the following nested infinite series.<ref name="ref_9a86a6a3">[https://www2.math.kyushu-u.ac.jp/~kaneko-labo/kibans/en/overview.html Multiple zeta values and functions]</ref> | ||
+ | # When the arguments are all positive integers, this is called the multiple zeta value; on the other hand, as a function of complex variables, this is called the multiple zeta function.<ref name="ref_9a86a6a3" /> | ||
+ | # Further, we develop an analytic and p-adic theory of multiple zeta functions, and with the theory of multiple zeta values, we attempt to contribute a new development in the area of multiple zetas.<ref name="ref_9a86a6a3" /> | ||
+ | # We study a variant of multiple zeta values of level 2, which forms a subspace of the space of alternating multiple zeta values.<ref name="ref_0cb0d01a">[https://www2.math.kyushu-u.ac.jp/~mkaneko/papers/KT_Tvalues.pdf On multiple zeta values of level two]</ref> | ||
+ | # This variant, which is regarded as the shue counterpart of Homans odd variant, exhibits nice properties such as duality, shue product, parity results, etc., like ordinary multiple zeta values.<ref name="ref_0cb0d01a" /> | ||
+ | # We also give some conjectures on relations between our values, Homans values, and multiple zeta values.<ref name="ref_0cb0d01a" /> | ||
+ | # In this paper, we study the following variant of the multiple zeta value, 1.<ref name="ref_0cb0d01a" /> | ||
+ | # Values of Euler-Zagiers multiple zeta function at non-positive integers are studied, especially at (0, 0, . . . , n) and (n, 0, . .<ref name="ref_b2d96d20">[http://math.tsukuba.ac.jp/~akiyama/papers/Mzvnrev.pdf Multiple zeta values at non-positive integers]</ref> | ||
+ | # Zagiers multiple zeta function dened by (cid:88) (2) k(s1, s2, . .<ref name="ref_b2d96d20" /> | ||
+ | # We will continue this study of multiple zeta values at non-positive inte- gers in detail.<ref name="ref_b2d96d20" /> | ||
+ | # We dene regular values of multiple zeta function at non-positive integers by (3) k(r1, r2, . . .<ref name="ref_b2d96d20" /> | ||
+ | # Multiple zeta values came out as revitalization of the zeta and double zeta values 200 years later.<ref name="ref_e27aa0a9">[https://lupucezar.wordpress.com/2017/03/26/multiple-zeta-values-euler-zagier-sums-and-some-evaluations/ An introduction to the Riemann zeta function, multiple zeta function, multiple zeta values (MZV or Euler-Zagier sums) and some of their special evaluations]</ref> | ||
+ | # In 1992, Michael Hoffman and Don Zagier generalized the concept of Riemann zeta function & values of the zeta function to the multiple zeta function and multiple zeta values.<ref name="ref_e27aa0a9" /> | ||
+ | # We call the above number a multiple zeta value of depth and weight .<ref name="ref_e27aa0a9" /> | ||
+ | # Abstract The sum formula is one of the most well-known relations among multiple zeta values.<ref name="ref_62cd260d">[https://projecteuclid.org/journals/journal-of-the-mathematical-society-of-japan/volume-67/issue-3/Sum-formula-for-finite-multiple-zeta-values/10.2969/jmsj/06731069.full Sum formula for finite multiple zeta values]</ref> | ||
+ | # This paper proves a conjecture of Kaneko predicting that an analogous formula holds for finite multiple zeta values.<ref name="ref_62cd260d" /> | ||
+ | # Multiple zeta values have been studied by a wide variety of methods.<ref name="ref_a1785ff5">[https://www.semanticscholar.org/paper/Algebraic-Aspects-of-Multiple-Zeta-Values-Hoffman/fc6b1577137da294e3ee6d37214eb18f98b96ade [PDF] Algebraic Aspects of Multiple Zeta Values]</ref> | ||
+ | # Many relations are known between multiple zeta values (k1, . . .<ref name="ref_e4877657">[http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_29.pdf Geometry of multiple zeta values]</ref> | ||
+ | # A relation coming from the associator condition for the Drinfeld associator, the generating function of multiple zeta values, is a geometric relation.<ref name="ref_e4877657" /> | ||
+ | # By the theory of mixed motives, we can control the dimension of the rational linear hull of multiple zeta values.<ref name="ref_e4877657" /> | ||
+ | # We dene a multiple zeta value (k1, . . .<ref name="ref_e4877657" /> | ||
+ | # This is the function eld analog of the Euler-Zagier multiple zeta function d(s1, . . .<ref name="ref_0bdf5974">[https://www.math.tamu.edu/~masri/BrettonWoodsProceedings.pdf Proceedings of symposia in pure mathematics]</ref> | ||
+ | # He then dened the multiple zeta values of depth d by d(a1, . . .<ref name="ref_0bdf5974" /> | ||
+ | # In this paper we initiate the study of multiple zeta values over global function elds.<ref name="ref_0bdf5974" /> | ||
+ | # Nonetheless, we believe that the multiple zeta function Zd (K; s1, . .<ref name="ref_0bdf5974" /> | ||
+ | # On generating functions of multiple zeta values and generalized hypergeometric functions, Manuscr.<ref name="ref_38a2257a">[https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1128/ Multiple zeta functions and polylogarithms over global function fields]</ref> | ||
+ | # Some particular multiple zeta values and sums of multiple zeta values can be further expressed as double integrals.<ref name="ref_6d667b08">[http://nzjm.math.auckland.ac.nz/images/a/a5/Duality_Theorems_of_Multiple_Zeta_Values_with_Parameters.pdf New zealand journal of mathematics]</ref> | ||
+ | # Key words and phrases: multiple zeta value; duality theorem; sum formula.<ref name="ref_6d667b08" /> | ||
+ | # Note that the special case q = 1 of (1.2) then gives the sum formula of multiple zeta values.<ref name="ref_6d667b08" /> | ||
+ | # In this paper, we add further factors to multiple zeta values with parameters and produce the following results.<ref name="ref_6d667b08" /> | ||
+ | ===소스=== | ||
+ | <references /> | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q2523239 Q2523239] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'multiple'}, {'LOWER': 'zeta'}, {'LEMMA': 'value'}] | ||
+ | * [{'LOWER': 'multiple'}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}] |
2021년 7월 4일 (일) 18:42 기준 최신판
개요
- 리만제타함수의 다변수 일반화 \(\zeta(s_1, \ldots, s_k)\)
- \(s_i\) 가 양의 정수일 때, 오일러 합이라 불림
- 정수론의 중요한 주제
- 물리에서 산란 진폭 등의 계산에서 등장
정의
- \(s_1>1, \cdots, s_k\)가 양의 정수라 하자
- 다중 제타 값을 다음과 같이 정의
\[ \zeta(s_1, \ldots, s_k) : = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, \!\]
- \(w=s_1+\cdots+s_k\)를 weight, \(k\)를 depth로 부른다
이중 제타
- 오일러의 공식
\[\zeta(2,1)=\zeta(3)\]
여러 가지 관계식
double shuffle
- 정리
\(m,n>1\) 일 때, \[\zeta(m)\zeta(n)=\zeta(m,n)+\zeta(n,m)+\zeta(m+n)\]
- 증명
\[ \zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} \]
오일러 분해 공식
- \(r,s>1\) 일 때,
\[\zeta(r)\zeta(s)=\sum_{a=0}^{s-1}\binom{a+r-1}{a}\zeta(r+a,s-a)+\sum_{a=0}^{r-1}\binom{a+s-1}{a}\zeta(s+a,r-a)\]
- 예
\[ \zeta(2) \zeta(3)=\zeta(2,3)+3\zeta(3,2)+6 \zeta(4,1) \]
기타
- 다음이 성립한다
\[ 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{n-2}\zeta(n-i)\zeta(i+1) \]
- 예
\[ \begin{align} \zeta(2,1)&=\zeta(3) \\ 2\zeta(3,1)&=-\zeta(2)^2+3\zeta(4) \\ \zeta(4,1)&=2\zeta(5)-\zeta(2)\zeta(3) \\ 2\zeta(5,1)&=-\zeta(3)^2-2\zeta(2)\zeta(4)+5\zeta(6) \end{align} \]
다중 제타 값의 공간
- 주어진 무게를 갖는 다중 제타 값이 이루는 유리수체 위에서 정의된 벡터 공간의 차원
- \(\{a_n\}_{n=1}^{\infty}\)를 \(a_n = a_{n-2} + a_{n-3}\), \(a_0=1, a_1=a_2=0\).
- 이를 파도반 수열이라 한다
- 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897
- Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals.
테이블
- 추측
주어진 무게 \(s\)의 다중 제타 값으로 생성되는 \(\mathbb{Q}\)-벡터 공간은 다음과 같은 기저를 갖는다 \begin{array}{c|c} s & \\ \hline 2 & \zeta_2 \\ 3 & \zeta_3 \\ 4 & \zeta_2^2 \\ 5 & \zeta_5,\zeta_2 \zeta_3 \\ 6 & \zeta_3^2,\zeta_2^3 \\ 7 & \zeta_7,\zeta_2 \zeta_5,\zeta_2^2 \zeta_3 \\ 8 & \zeta_{5,3},\zeta_3 \zeta_5,\zeta_2 \zeta_3^2,\zeta_2^4 \\ 9 & \zeta_9,\zeta_2 \zeta_7,\zeta_2^2 \zeta_5,\zeta_3^3,\zeta_2^3 \zeta_3 \\ 10 & \zeta_{7,3},\zeta_2 \zeta_{5,3},\zeta_3 \zeta_7,\zeta_5^2,\zeta_2 \zeta_3 \zeta_5,\zeta_2^2 \zeta_3^2,\zeta_2^5 \\ \end{array}
테이블
이중 제타 값
\[ \begin{array}{c|c|c} \zeta (2,1) & 1.2021 & \zeta (3) \\ \zeta (2,2) & 0.81174 & \frac{\pi ^4}{120} \\ \zeta (2,3) & 0.71157 & \frac{9 \zeta (5)}{2}-\frac{\pi ^2 \zeta (3)}{3} \\ \zeta (2,4) & 0.67452 & \frac{5 \pi ^6}{2268}-\zeta (3)^2 \\ \zeta (2,5) & 0.65875 & -\frac{\pi ^4 \zeta (3)}{45}+10 \zeta (7)-\frac{2 \pi ^2 \zeta (5)}{3} \\ \zeta (2,6) & 0.65157 & \frac{\pi ^8}{14175}-\zeta (6,2) \\ \zeta (2,7) & 0.64817 & -\frac{1}{945} 2 \pi ^6 \zeta (3)-\pi ^2 \zeta (7)+\frac{35 \zeta (9)}{2}-\frac{2 \pi ^4 \zeta (5)}{45} \\ \zeta (3,1) & 0.27058 & \frac{\pi ^4}{360} \\ \zeta (3,2) & 0.22881 & \frac{1}{2} \left(\pi ^2 \zeta (3)-11 \zeta (5)\right) \\ \zeta (3,3) & 0.21380 & \frac{\zeta (3)^2}{2}-\frac{\pi ^6}{1890} \\ \zeta (3,4) & 0.20751 & \frac{\pi ^4 \zeta (3)}{90}+\frac{5 \pi ^2 \zeta (5)}{3}-18 \zeta (7) \\ \zeta (3,5) & 0.20466 & -4 \zeta (3) \zeta (5)+\frac{5 \zeta (6,2)}{2}+\frac{41 \pi ^8}{75600} \\ \zeta (3,6) & 0.20332 & \frac{\pi ^6 \zeta (3)}{945}+\frac{\pi ^4 \zeta (5)}{15}+\frac{7 \pi ^2 \zeta (7)}{2}-\frac{85 \zeta (9)}{2} \\ \zeta (4,1) & 0.096551 & 2 \zeta (5)-\frac{\pi ^2 \zeta (3)}{6} \\ \zeta (4,2) & 0.088483 & \zeta (3)^2-\frac{4 \pi ^6}{2835} \\ \zeta (4,3) & 0.085160 & 17 \zeta (7)-\frac{5 \pi ^2 \zeta (5)}{3} \\ \zeta (4,4) & 0.083673 & \frac{\pi ^8}{113400} \\ \zeta (4,5) & 0.082978 & \frac{1}{90} \left(-4 \pi ^4 \zeta (5)-525 \pi ^2 \zeta (7)+5625 \zeta (9)\right) \\ \zeta (5,1) & 0.040537 & \frac{\pi ^6-630 \zeta (3)^2}{1260} \\ \zeta (5,2) & 0.038575 & \frac{\pi ^4 \zeta (3)}{45}+\frac{5 \pi ^2 \zeta (5)}{6}-11 \zeta (7) \\ \zeta (5,3) & 0.037708 & 5 \zeta (3) \zeta (5)-\frac{5 \zeta (6,2)}{2}-\frac{7 \pi ^8}{10800} \\ \zeta (5,4) & 0.037305 & \frac{1}{18} \left(\pi ^4 \zeta (5)+105 \pi ^2 \zeta (7)-1143 \zeta (9)\right) \\ \zeta (6,1) & 0.018356 & -\frac{\pi ^4 \zeta (3)}{90}+3 \zeta (7)-\frac{\pi ^2 \zeta (5)}{6} \\ \zeta (6,2) & 0.017820 & \zeta (6,2) \\ \zeta (6,3) & 0.017573 & -\frac{\pi ^4 \zeta (5)}{15}+\frac{83 \zeta (9)}{2}-\frac{7 \pi ^2 \zeta (7)}{2} \\ \end{array} \]
메모
- http://math.unice.fr/~brunov/GdT/The%20Algebra%20Of%20Multiple%20Zeta%20Values.pdf
- REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS
- MZV
관련된 항목들
계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxU0NmSDg0cGNyYmM/edit
- https://oeis.org/A000931
- Multisum
- Anzai, C., and Y. Sumino. ‘Algorithms to Evaluate Multiple Sums for Loop Computations’. arXiv:1211.5204 [hep-Ph, Physics:hep-Th, Physics:math-Ph], 22 November 2012. http://arxiv.org/abs/1211.5204.
사전 형태의 자료
리뷰, 에세이, 강의노트
- Schneps, Leila. ‘ARI, GARI, Zig and Zag: An Introduction to Ecalle’s Theory of Multiple Zeta Values’. arXiv:1507.01534 [math], 6 July 2015. http://arxiv.org/abs/1507.01534.
- Brown, Francis. “Motivic Periods and the Projective Line Minus Three Points.” arXiv:1407.5165 [math], July 19, 2014. http://arxiv.org/abs/1407.5165.
- http://www.math.jussieu.fr/~leila/MIT4B.pdf
- Survey of the theory of multiple zeta values, Leila Schneps
- Pierre Deligne Multizetas, d´aprés Francis Brown, Seminaire Bourbaki, Nr. 1048, January 2012, http://www.math.ias.edu/files/deligne/012312MultiZetas.pdf
관련논문
- Masanobu Kaneko, Shuji Yamamoto, A new integral-series identity of multiple zeta values and regularizations, arXiv:1605.03117 [math.NT], May 10 2016, http://arxiv.org/abs/1605.03117
- Benjamin Enriquez, Hidekazu Furusho, A stabilizer interpretation of double shuffle Lie algebras, arXiv:1605.02838 [math.QA], May 10 2016, http://arxiv.org/abs/1605.02838
- Johannes Broedel, Nils Matthes, Oliver Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, arXiv:1507.02254 [hep-th], July 08 2015, http://arxiv.org/abs/1507.02254, 10.1088/1751-8113/49/15/155203, http://dx.doi.org/10.1088/1751-8113/49/15/155203, J.Phys. A49 (2016) 155203
- Zhonghua Li, Chen Qin, Stuffle product formulas of multiple zeta values, arXiv:1603.08332[math.NT], March 28 2016, http://arxiv.org/abs/1603.08332v1
- Zhonghua Li, Chen Qin, Shuffle product formulas of multiple zeta values, http://arxiv.org/abs/1603.05786v1
- Michael E. Hoffman, On Multiple Zeta Values of Even Arguments, http://arxiv.org/abs/1205.7051v3
- Ding Ma, Koji Tasaka, On triple zeta values of even weight and their connections with period polynomials, http://arxiv.org/abs/1603.01013v1
- Vieru, Andrei. “Analytic Renormalization of Multiple Zeta Functions. Geometry and Combinatorics of Generalized Euler Reflection Formula for MZV.” arXiv:1601.04703 [math], January 18, 2016. http://arxiv.org/abs/1601.04703.
- Jarossay, David. “Depth Reductions for Associators.” arXiv:1601.01161 [math], January 6, 2016. http://arxiv.org/abs/1601.01161.
- Murahara, Hideki. “Derivation Relations for Finite Multiple Zeta Values.” arXiv:1512.08696 [math], December 29, 2015. http://arxiv.org/abs/1512.08696.
- Ebrahimi-Fard, Kurusch, Dominique Manchon, and Johannes Singer. “Duality and (q-)multiple Zeta Values.” arXiv:1512.00753 [math], December 2, 2015. http://arxiv.org/abs/1512.00753.
- Zerbini, Federico. “Single-Valued Multiple Zeta Values in Genus 1 Superstring Amplitudes.” arXiv:1512.05689 [hep-Th], December 17, 2015. http://arxiv.org/abs/1512.05689.
- Panzer, Erik. “The Parity Theorem for Multiple Polylogarithms.” arXiv:1512.04482 [math], December 14, 2015. http://arxiv.org/abs/1512.04482.
- Singer, Johannes, and Jianqiang Zhao. “Finite and Symmetrized Colored Multiple Zeta Values.” arXiv:1512.03691 [math], December 11, 2015. http://arxiv.org/abs/1512.03691.
- Ebrahimi-Fard, Kurusch, Dominique Manchon, Johannes Singer, and Jianqiang Zhao. “Renormalisation Group for Multiple Zeta Values.” arXiv:1511.06720 [math], November 20, 2015. http://arxiv.org/abs/1511.06720.
- Ma, Ding. “Connections between Double Zeta Values Relative to \(\mu_N\), Hecke Operators \(T_N\), and Newforms of Level \(\Gamma_0(N)\) for \(N=2,3\).” arXiv:1511.06102 [math], November 19, 2015. http://arxiv.org/abs/1511.06102.
- Ebrahimi-Fard, Kurusch, Dominique Manchon, Johannes Singer, and Jianqiang Zhao. “Transfer Group for Renormalized Multiple Zeta Values.” arXiv:1510.09159 [math], October 30, 2015. http://arxiv.org/abs/1510.09159.
- Chang, Chieh-Yu. “Linear Relations among Double Zeta Values in Positive Characteristic.” arXiv:1510.06519 [math], October 22, 2015. http://arxiv.org/abs/1510.06519.
- Dotzel, Michael, and Ivan Horozov. “Shuffle Product for Multiple Dedekind Zeta Values over Imaginary Quadratic Fields.” arXiv:1509.08400 [math], September 28, 2015. http://arxiv.org/abs/1509.08400.
- Matthes, Nils. “Elliptic Double Zeta Values.” arXiv:1509.08760 [math], September 29, 2015. http://arxiv.org/abs/1509.08760.
- Furusho, Hidekazu, Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura. “Desingularization of Complex Multiple Zeta-Functions.” arXiv:1508.06920 [math], August 27, 2015. http://arxiv.org/abs/1508.06920.
- Broedel, Johannes, Nils Matthes, and Oliver Schlotterer. ‘Relations between Elliptic Multiple Zeta Values and a Special Derivation Algebra’. arXiv:1507.02254 [hep-Th], 8 July 2015. http://arxiv.org/abs/1507.02254.
- Oyama, Kojiro. ‘Ohno’s Relation for Finite Multiple Zeta Values’. arXiv:1506.00833 [math], 2 June 2015. http://arxiv.org/abs/1506.00833.
- Kaneko, Masanobu, and Mika Sakata. ‘On Multiple Zeta Values of Extremal Height’. arXiv:1505.01014 [math], 5 May 2015. http://arxiv.org/abs/1505.01014.
- Zudilin, Wadim. ‘On a Family of Polynomials Related to \(\zeta(2,1)=\zeta(3)\)’. arXiv:1504.07696 [math-Ph], 28 April 2015. http://arxiv.org/abs/1504.07696.
- Furusho, Hidekazu. “On Relations among Multiple Zeta Values Obtained in Knot Theory.” arXiv:1501.06638 [math], January 26, 2015. http://arxiv.org/abs/1501.06638.
- Brown, Francis. “Multiple Modular Values for SL_2(Z).” arXiv:1407.5167 [math], July 19, 2014. http://arxiv.org/abs/1407.5167.
- Zhao, Jianqiang. “Uniform Approach to Double Shuffle and Duality Relations of Various Q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.” arXiv:1412.8044 [math], December 27, 2014. http://arxiv.org/abs/1412.8044.
- Zagier, Don. ‘Evaluation of the Multiple Zeta Values zeta(2,...,2,3,2,...,2)’. Annals of Mathematics 175, no. 2 (1 March 2012): 977–1000. doi:10.4007/annals.2012.175.2.11.
- Blümlein, J., D. J. Broadhurst, and J. A. M. Vermaseren. ‘The Multiple Zeta Value Data Mine’. Computer Physics Communications 181, no. 3 (March 2010): 582–625. doi:10.1016/j.cpc.2009.11.007.
- Guo, Li, and Bin Zhang. ‘Renormalization of Multiple Zeta Values’. Journal of Algebra 319, no. 9 (1 May 2008): 3770–3809. doi:10.1016/j.jalgebra.2008.02.003.
- Ihara, Kentaro, Masanobu Kaneko, and Don Zagier. ‘Derivation and Double Shuffle Relations for Multiple Zeta Values’. Compositio Mathematica 142, no. 02 (March 2006): 307–38. doi:10.1112/S0010437X0500182X.
노트
말뭉치
- When s 1 , ..., s k are all positive integers (with s 1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums.[1]
- In fact, this appears to be just the simplest of a whole family of similar identities: see the paper "Combinatorial aspects of multiple zeta values" for details.[2]
- For more details see the paper "Relations of multiple zeta values and their algebraic expression".[2]
- See the talk "Algebraic structures on the set of multiple zeta values" for one approach to this problem.[2]
- You can play around with multiple zeta values yourself using the EZFace calculator at CECM (Centre for Experimental and Constructive Mathematics at Simon Fraser University).[2]
- They show that the Qvector space spanned by the multiple zeta values is in fact an algebra: a product of linear combinations of numbers of the form (s) is again a linear combination of such numbers.[3]
- Classical theory of multiple zeta values 1.1.[4]
- Denition of multiple zeta values 1.3.[4]
- Integral representation of multiple zeta values 1.6.[4]
- Two families of motivic multiple zeta values and Zagiers theorem 5.4.[4]
- Where zeta functions appear in physics as expressions for vacuum amplitudes, so multiple zeta functions appear in expressions for more general scattering amplitudes.[5]
- The intricate combinatorics of these becomes often more tractable when re-expressing them as motivic multiple zeta values.[5]
- It turns out that multiple zeta values are also related to modular forms but that here the relationship is much more mysterious.[6]
- Their observation is subsumed in the far-reaching Broadhurst-Kreimer conjecture which describes the algebraic structure of multiple zeta values entirely in terms of modular forms.[6]
- In light of the seemingly mysterious relationship between multiple zeta values and period integrals of modular forms, it is natural to ask for a common framework accommodating both objects.[6]
- In particular, the study of elliptic multiple zeta values should offer a more conceptual explanation of the Broadhurst-Kreimer conjecture.[6]
- We also discuss some results about multiple zeta values that can be stated in terms of derivations and cyclic derivations of Q〈x,y〉, and we define an action of QSym on Q〈x,y〉 that appears useful.[7]
- Finally, we apply the algebraic approach to relations of finite partial sums of multiple zeta value series.[7]
- The multiple zeta value (a1, a2, . . . , ak), with ai positive integers, is dened by (a1, a2, . .[8]
- The sum (cid:80)k i=1 ai of the ai is called weight of the multiple zeta value.[8]
- I now want to convince you that multiple zeta values satisfy a huge number of relations.[8]
- Weve already seen how the product of two RZVs can be written as a combination of multiple zeta values by multiplying the dening sums.[8]
- For , let be the sum of all multiple zeta values with even arguments whose weight is and whose depth is .[9]
- The multiple zeta functions have attracted considerable interest in recent years.[9]
- Derivation and extended double shue (EDS) relations for multiple zeta values (MZVs) are proved.[10]
- In recent years, there has been a considerable amount of interest in certain real numbers called multiple zeta values (MZVs).[10]
- It is based on a simultaneous Padé approximation problem involving certain multiple polylogarithms, which evaluated at the point 1 are multiple zeta values equal to powers of pi.[11]
- At the point 1, this provides a rational linear combination of 1 and multiple zeta values in an extended sense that turn out to be values of the Riemann zeta function at odd integers.[11]
- Normally multiple zeta values (MZVs for short) mean the former and are denoted by (k).[12]
- They proved that the special values of k(s) at non-positive integers are given by poly-Bernoulli numbers and the values at positive integers are given in terms of multiple zeta values.[12]
- Multiple zeta values and functions are defined by the following nested infinite series.[13]
- When the arguments are all positive integers, this is called the multiple zeta value; on the other hand, as a function of complex variables, this is called the multiple zeta function.[13]
- Further, we develop an analytic and p-adic theory of multiple zeta functions, and with the theory of multiple zeta values, we attempt to contribute a new development in the area of multiple zetas.[13]
- We study a variant of multiple zeta values of level 2, which forms a subspace of the space of alternating multiple zeta values.[14]
- This variant, which is regarded as the shue counterpart of Homans odd variant, exhibits nice properties such as duality, shue product, parity results, etc., like ordinary multiple zeta values.[14]
- We also give some conjectures on relations between our values, Homans values, and multiple zeta values.[14]
- In this paper, we study the following variant of the multiple zeta value, 1.[14]
- Values of Euler-Zagiers multiple zeta function at non-positive integers are studied, especially at (0, 0, . . . , n) and (n, 0, . .[15]
- Zagiers multiple zeta function dened by (cid:88) (2) k(s1, s2, . .[15]
- We will continue this study of multiple zeta values at non-positive inte- gers in detail.[15]
- We dene regular values of multiple zeta function at non-positive integers by (3) k(r1, r2, . . .[15]
- Multiple zeta values came out as revitalization of the zeta and double zeta values 200 years later.[16]
- In 1992, Michael Hoffman and Don Zagier generalized the concept of Riemann zeta function & values of the zeta function to the multiple zeta function and multiple zeta values.[16]
- We call the above number a multiple zeta value of depth and weight .[16]
- Abstract The sum formula is one of the most well-known relations among multiple zeta values.[17]
- This paper proves a conjecture of Kaneko predicting that an analogous formula holds for finite multiple zeta values.[17]
- Multiple zeta values have been studied by a wide variety of methods.[18]
- Many relations are known between multiple zeta values (k1, . . .[19]
- A relation coming from the associator condition for the Drinfeld associator, the generating function of multiple zeta values, is a geometric relation.[19]
- By the theory of mixed motives, we can control the dimension of the rational linear hull of multiple zeta values.[19]
- We dene a multiple zeta value (k1, . . .[19]
- This is the function eld analog of the Euler-Zagier multiple zeta function d(s1, . . .[20]
- He then dened the multiple zeta values of depth d by d(a1, . . .[20]
- In this paper we initiate the study of multiple zeta values over global function elds.[20]
- Nonetheless, we believe that the multiple zeta function Zd (K; s1, . .[20]
- On generating functions of multiple zeta values and generalized hypergeometric functions, Manuscr.[21]
- Some particular multiple zeta values and sums of multiple zeta values can be further expressed as double integrals.[22]
- Key words and phrases: multiple zeta value; duality theorem; sum formula.[22]
- Note that the special case q = 1 of (1.2) then gives the sum formula of multiple zeta values.[22]
- In this paper, we add further factors to multiple zeta values with parameters and produce the following results.[22]
소스
- ↑ Multiple zeta function
- ↑ 2.0 2.1 2.2 2.3 Multiple Zeta Values
- ↑ Updated mars 2, 2017
- ↑ 4.0 4.1 4.2 4.3 Clay mathematics proceedings
- ↑ 5.0 5.1 multiple zeta values in nLab
- ↑ 6.0 6.1 6.2 6.3 Multiple zeta values and modular forms
- ↑ 7.0 7.1 Algebraic Aspects of Multiple Zeta Values
- ↑ 8.0 8.1 8.2 8.3 Multiple zeta values
- ↑ 9.0 9.1 Algorithms for Some Euler-Type Identities for Multiple Zeta Values
- ↑ 10.0 10.1 Compositio math. 142 (2006) 307–338
- ↑ 11.0 11.1 Multiple zeta values, Padé approximation and Vasilyev's conjecture
- ↑ 12.0 12.1 (cid:1)
- ↑ 13.0 13.1 13.2 Multiple zeta values and functions
- ↑ 14.0 14.1 14.2 14.3 On multiple zeta values of level two
- ↑ 15.0 15.1 15.2 15.3 Multiple zeta values at non-positive integers
- ↑ 16.0 16.1 16.2 An introduction to the Riemann zeta function, multiple zeta function, multiple zeta values (MZV or Euler-Zagier sums) and some of their special evaluations
- ↑ 17.0 17.1 Sum formula for finite multiple zeta values
- ↑ [PDF Algebraic Aspects of Multiple Zeta Values]
- ↑ 19.0 19.1 19.2 19.3 Geometry of multiple zeta values
- ↑ 20.0 20.1 20.2 20.3 Proceedings of symposia in pure mathematics
- ↑ Multiple zeta functions and polylogarithms over global function fields
- ↑ 22.0 22.1 22.2 22.3 New zealand journal of mathematics
메타데이터
위키데이터
- ID : Q2523239
Spacy 패턴 목록
- [{'LOWER': 'multiple'}, {'LOWER': 'zeta'}, {'LEMMA': 'value'}]
- [{'LOWER': 'multiple'}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]