"1,2,4,8 과 1,3,7"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
21번째 줄: 21번째 줄:
  
 
* 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
 
* 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
*  프로베니우스의 정리<br> any associative division algebra over R is isomorphic to R, C or H.<br>
+
*  프로베니우스의 정리<br> 실수체 <math>\Bbb{R}</math> 위에 정의된 결합법칙을 만족하는 나눗셈대수는 실수 <math>\Bbb{R}</math>, 복소수 <math>\Bbb{C}</math>, 사원수 <math>\Bbb{H}</math> 뿐이다<br> any associative division algebra over R is isomorphic to R, C or H.<br>
  
 
 
 
 
32번째 줄: 32번째 줄:
 
*  후르비츠의 정리<br> 실수체 <math>\Bbb{R}</math> 위에 정의된 composition 대수는 실수 <math>\Bbb{R}</math>, 복소수 <math>\Bbb{C}</math>, 사원수 <math>\Bbb{H}</math>, 팔원수 <math>\Bbb{O}</math> 뿐이다.<br>
 
*  후르비츠의 정리<br> 실수체 <math>\Bbb{R}</math> 위에 정의된 composition 대수는 실수 <math>\Bbb{R}</math>, 복소수 <math>\Bbb{C}</math>, 사원수 <math>\Bbb{H}</math>, 팔원수 <math>\Bbb{O}</math> 뿐이다.<br>
  
*  실수나 복소수위에 정의된 norm 이 주어진 벡터공간이면서 division algebra이 다음을 만족시킬 경우, normed division algebra로 정의<br><math> \|x \, y\| \ =  \|x \| \, \| y\|</math><br>
+
*  실수나 복소수위에 정의된 norm 이 주어진 벡터공간이 나눗셈대수(division algebra)구조를 갖고 다음을 만족시킬 경우, normed 나눗셈대수로 정의<br><math> \|x \, y\| \ =  \|x \| \, \| y\|</math><br>
* normed division algebra는 composition 대수의 특별한 경우이다
+
* normed 나눗셈대수(division algebra) 는 composition 대수의 특별한 경우이다
  
 
 
 
 
61번째 줄: 61번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
* division algebra 나눗셈 대수
* 발음사전 http://www.forvo.com/search/
 
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=division<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=norm
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=norm
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
  
 
 
 
 

2011년 12월 1일 (목) 16:38 판

이 항목의 스프링노트 원문주소

 

 

개요
  • \(\mathbb R^n\) 은 division algebra이다 \(\iff\)\(n=1,2,4,8\)
  • \(S^n\) 는 H-space 이다. \(\iff\)\(n=0,1,3,7\)
  • \(S^n\) 은 n개의 일차독립인 벡터장을 갖는다 \(\iff\)\(n=0,1,3,7\)
  • fiber 번들 \(S^p \to S^q \to S^r\) 이 존재한다. \(\iff\)\((p,q,r) = (0,1,1),(1,3,2),(3,7,4),(7,15,8)\)

 

 

프로베니우스의 정리
  • 실수 위에 정의된 결합법칙을 만족하는 유한차원 division algebras
  • 프로베니우스의 정리
    실수체 \(\Bbb{R}\) 위에 정의된 결합법칙을 만족하는 나눗셈대수는 실수 \(\Bbb{R}\), 복소수 \(\Bbb{C}\), 사원수 \(\Bbb{H}\) 뿐이다
    any associative division algebra over R is isomorphic to R, C or H.

 

 

composition 대수에 관한 후르비츠의 정리
  • 체 위에 정의된 composition 대수는 항등원 1 (즉 모든 원소 x 에 대하여 \(1\cdot x = x \cdot 1= x\)을 만족시키는 원소)을 갖는 normed 대수이다
  • 후르비츠의 정리
    실수체 \(\Bbb{R}\) 위에 정의된 composition 대수는 실수 \(\Bbb{R}\), 복소수 \(\Bbb{C}\), 사원수 \(\Bbb{H}\), 팔원수 \(\Bbb{O}\) 뿐이다.
  • 실수나 복소수위에 정의된 norm 이 주어진 벡터공간이 나눗셈대수(division algebra)구조를 갖고 다음을 만족시킬 경우, normed 나눗셈대수로 정의
    \( \|x \, y\| \ = \|x \| \, \| y\|\)
  • normed 나눗셈대수(division algebra) 는 composition 대수의 특별한 경우이다

 

 

관련된 고교수학 또는 대학수학

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

관련도서

 

사전형태의 자료

 

 

관련논문

 

 

관련기사