"다이감마 함수(digamma function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
* [[다이감마 함수(digamma function)|digamma 함수]]<br>
 
* [[다이감마 함수(digamma function)|digamma 함수]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 
*  감마함수의 로그미분으로 정의<br>
 
*  감마함수의 로그미분으로 정의<br>
37번째 줄: 37번째 줄:
  
 
*  trigamma<br><math>\psi'(z)=\frac{1}{x^2}+\sum_{n=1}^\infty  \frac{1}{(n+z)^2}</math><br>
 
*  trigamma<br><math>\psi'(z)=\frac{1}{x^2}+\sum_{n=1}^\infty  \frac{1}{(n+z)^2}</math><br>
* tetragamma 
+
* tetragamma <math>\psi''(z)</math>
* pentagamma
+
* pentagamma <math>\psi^{(3)}(z)</math>
  
 
 
 
 
44번째 줄: 44번째 줄:
 
 
 
 
  
 
+
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">차분방정식과의 관계</h5>
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">차분방정식과의 관계</h5>
 
  
 
* [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|차분방정식]]<br><math>\Delta \psi=\frac{1}{x}</math> 즉, <br>
 
* [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|차분방정식]]<br><math>\Delta \psi=\frac{1}{x}</math> 즉, <br>
58번째 줄: 52번째 줄:
 
*  차분방정식의 기본정리를 적용하면<br><math>\sum_{n=a}^{b-1}\frac{1}{n}=\psi(b)-\psi(a)</math><br>
 
*  차분방정식의 기본정리를 적용하면<br><math>\sum_{n=a}^{b-1}\frac{1}{n}=\psi(b)-\psi(a)</math><br>
 
* [[조화급수와 조화 평균에서 '조화'란?|조화급수]]와의 관계<br><math>\sum_{n=1}^{N}\frac{1}{n}=\psi(N+1)-\psi(1)=\psi(N+1)-\gamma</math><br>
 
* [[조화급수와 조화 평균에서 '조화'란?|조화급수]]와의 관계<br><math>\sum_{n=1}^{N}\frac{1}{n}=\psi(N+1)-\psi(1)=\psi(N+1)-\gamma</math><br>
 +
*  일반화<br><math>\psi^{(n)}(x+1)-\psi^{(n)}(x)=\frac{(-1)^n n!}{x^{n+1}}</math><br>
  
 
 
 
 
88번째 줄: 83번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">덧셈공식</h5>
+
<h5 style="margin: 0px; line-height: 2em;">덧셈공식</h5>
  
 
*  이항 덧셈공식<br><math>\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2</math><br>
 
*  이항 덧셈공식<br><math>\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2</math><br>
112번째 줄: 107번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">가우스의 Digamma 정리</h5>
+
<h5 style="margin: 0px; line-height: 2em;">가우스의 Digamma 정리</h5>
  
 
<math>\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k)  -\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)</math>
 
<math>\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k)  -\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)</math>
124번째 줄: 119번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">special values</h5>
+
<h5 style="margin: 0px; line-height: 2em;">special values</h5>
  
 
<math>\psi(1) = -\gamma\,\!</math>
 
<math>\psi(1) = -\gamma\,\!</math>
150번째 줄: 145번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
  
 
 
 
 
167번째 줄: 162번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
  
 
 
 
 
179번째 줄: 174번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
  
 
 
 
 
185번째 줄: 180번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 
* [[감마함수]]<br>
 
* [[감마함수]]<br>
193번째 줄: 188번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
204번째 줄: 199번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
*   <br>
 
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Digamma_function
 
* http://en.wikipedia.org/wiki/Digamma_function
214번째 줄: 208번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
221번째 줄: 215번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 
* [http://dx.doi.org/10.1016/j.jnt.2009.02.007 Linear independence of digamma function and a variant of a conjecture of Rohrlich]<br>
 
* [http://dx.doi.org/10.1016/j.jnt.2009.02.007 Linear independence of digamma function and a variant of a conjecture of Rohrlich]<br>
233번째 줄: 227번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
 
* [http://books.google.com/books?id=yoGvQAAACAAJ Methods of Summation]<br>
 
* [http://books.google.com/books?id=yoGvQAAACAAJ Methods of Summation]<br>
250번째 줄: 244번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
261번째 줄: 255번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2010년 2월 27일 (토) 17:12 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 감마함수의 로그미분으로 정의

 

 

정의와 급수표현
  • 정의
    \(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)
  • 급수표현
    \(\psi(z)=-\frac{1}{z} -\gamma +\sum_{n=1}^\infty \frac{z}{n(n+z)} , z \neq 0, -1, -2, -3, ...\)

(증명)

감마함수의 무한곱표현

\(\Gamma(z) &= \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\)

위의 식에 로그미분을 취하여 얻는다. ■

 

 

미분
  • trigamma
    \(\psi'(z)=\frac{1}{x^2}+\sum_{n=1}^\infty \frac{1}{(n+z)^2}\)
  • tetragamma \(\psi''(z)\)
  • pentagamma \(\psi^{(3)}(z)\)

 

 

차분방정식과의 관계

\(\psi(x + 1) - \psi(x) = \frac{1}{x}\)

  • 차분방정식의 기본정리를 적용하면
    \(\sum_{n=a}^{b-1}\frac{1}{n}=\psi(b)-\psi(a)\)
  • 조화급수와의 관계
    \(\sum_{n=1}^{N}\frac{1}{n}=\psi(N+1)-\psi(1)=\psi(N+1)-\gamma\)
  • 일반화
    \(\psi^{(n)}(x+1)-\psi^{(n)}(x)=\frac{(-1)^n n!}{x^{n+1}}\)

 

 

테일러급수

\(\psi(x) = \log(x) - \frac{1}{2x} - \sum_{n=1}^\infty \frac{B(2n)}{2n(x^{2n})}\)

 

 

반사공식
  • 감마함수의 반사공식
    \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)
  • 위의 식을 로그미분하여 다음을 얻는다

\(\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }\)

여기서 \(x\)를 \(-x\)로 두면 다음을 얻는다

\(\psi(1 + x) = \psi(-x) -\pi\,\!\cot{ \left ( \pi x \right ) }\)

 

 

덧셈공식
  • 이항 덧셈공식
    \(\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2\)

(증명)

감마함수의 곱셈공식 

\(2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\)

로그를 취하면

\((2\ln 2)x+\ln \Gamma(x) +\ln \Gamma\left(x + \frac{1}{2}\right) = \ln 2\sqrt{\pi}+\ln \Gamma(2x)\)

미분하면,

\(\psi(2x)=\psi(x)+\psi(x+{1\over2})+\ln 2\) ■

 

 

 

가우스의 Digamma 정리

\(\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k) -\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)\)

\(\psi\left(1-\frac{m}{k}\right) = -\gamma -\ln(2k) +\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lceil (k-1)/2\rceil} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right)\)

 

 

 

special values

\(\psi(1) = -\gamma\,\!\)

\(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)

\(\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\)

\(\psi\left(\frac{2}{3}\right) = -\frac{\pi}{2\sqrt{3}} +\frac{3}{2}\ln{3} - \gamma\)

\(\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma\)

\(\psi\left(\frac{3}{4}\right) = \frac{\pi}{2} - 3\ln{2} - \gamma\)

\(\psi\left(\frac{1}{5}\right) =- \gamma-\frac{\pi}{2}\sqrt{1+\frac{2}{5}\sqrt{5}}-\frac{5}{4}\ln 5-\frac{\sqrt{5}}{4}\ln\frac{1}{2}(3+\sqrt{5})\)

\(\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\)

\(\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma\)

 

 

 

재미있는 사실

 

 

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그