"단진자의 주기와 타원적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 공개로 바꾸었습니다.)
10번째 줄: 10번째 줄:
  
 
*  단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐<br><math>{d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 </math><br>
 
*  단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐<br><math>{d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 </math><br>
*  비선형 [[미분방정식]]이며, 대학수준의 역학에서는 <math>\theta</math>가 0에 매우 가깝다고 가정하고, <math>\sin\theta\approx \theta</math>의 를 이용하여 다음과 같은 미분방정식으로 대체한다<br><math>d^2\theta\over dt^2}+{g\over \ell}\theta=0</math><br> 이 때 단진자의 주기는 <math>2\pi\sqrt\frac{\ell}{g}</math> 로 주어진다<br>
+
*  비선형 [[미분방정식]]이며, 대학수준의 역학에서는 <math>\theta</math>가 0에 매우 가깝다고 가정하고, <math>\sin\theta\approx \theta</math> 임을 이용하여 다음과 같은 미분방정식으로 대체한다<br><math>d^2\theta\over dt^2}+{g\over \ell}\theta=0</math><br> 이 때 단진자의 주기는 <math>2\pi\sqrt\frac{\ell}{g}</math> 로 주어진다<br>
근사를 사용하지 않고 주기를 구하기 위해서는, [[타원적분(통합됨)|타원적분]]이 필요<br>
+
근사가 아닌 원래 미분방정식에 대한 진자의 주기를 구하기 위해서는, [[타원적분]]이 필요하다<br>
  
 
 
 
 
21번째 줄: 21번째 줄:
 
<h5 style="line-height: 2em; margin: 0px;">단진자의 주기</h5>
 
<h5 style="line-height: 2em; margin: 0px;">단진자의 주기</h5>
  
*  단진자의 주기는 다음과 같다<br><math>T = 4\sqrt{\ell\over  {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin\phi}}\,d\phi</math> (여기서 <math>k=\frac{A}{\sqrt{2}}=\sqrt{\frac{1-\cos\theta_0}{2}}=\sin\frac{\theta_0}{2}</math>)<br>
+
*  단진자의 주기는 다음과 같다<br><math>T = 4\sqrt{\ell\over  {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin\phi}}\,d\phi</math>. 여기서 <math>k=\frac{A}{\sqrt{2}}=\sqrt{\frac{1-\cos\theta_0}{2}}=\sin\frac{\theta_0}{2}</math><br>
  
 
(증명)
 
(증명)
29번째 줄: 29번째 줄:
 
<math>T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta</math>
 
<math>T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta</math>
  
여기서 다음과 같은 치환을 사용하자.
+
여기서 <math>A=\sqrt{1-\cos\theta_0}</math> 로 두고, 다음과 같은 치환을 사용하자.
 
 
<math>A=\sqrt{1-\cos\theta_0}</math>
 
  
 
<math>\cos\theta-\cos\theta_0=(A\cos\phi)^2</math>
 
<math>\cos\theta-\cos\theta_0=(A\cos\phi)^2</math>
41번째 줄: 39번째 줄:
 
<math>\sin\theta=\sqrt{1-\cos^2\theta}=A\sin\phi\sqrt{2-A^2\sin\phi}</math>
 
<math>\sin\theta=\sqrt{1-\cos^2\theta}=A\sin\phi\sqrt{2-A^2\sin\phi}</math>
  
<math>\sin\theta \,d\theta=2A^2\cos\phi\sin\phi</math>
+
<math>\sin\theta \,d\theta=2A^2\cos\phi\sin\phi</math> 를 얻는다.
 +
 
 +
주기를 구하면,
  
 
<math>T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin\phi}}\,d\phi</math>
 
<math>T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin\phi}}\,d\phi</math>
53번째 줄: 53번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">제1종 타원적분</h5>
+
<h5 style="line-height: 2em; margin: 0px;">제1종 타원적분과의 관계</h5>
  
 
*  다음과 같이 정의된 적분<br><math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}</math><br>
 
*  다음과 같이 정의된 적분<br><math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}</math><br>
76번째 줄: 76번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들[[타원적분(통합됨)|]]</h5>
  
* [[타원적분(통합됨)|타원적분]]<br>
 
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K]]<br>
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K]]<br>
 +
* [[#]]<br>
  
 
 
 
 

2010년 5월 14일 (금) 05:27 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐
    \({d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 \)
  • 비선형 미분방정식이며, 대학수준의 역학에서는 \(\theta\)가 0에 매우 가깝다고 가정하고, \(\sin\theta\approx \theta\) 임을 이용하여 다음과 같은 미분방정식으로 대체한다
    \(d^2\theta\over dt^2}+{g\over \ell}\theta=0\)
    이 때 단진자의 주기는 \(2\pi\sqrt\frac{\ell}{g}\) 로 주어진다
  • 근사가 아닌 원래 미분방정식에 대한 진자의 주기를 구하기 위해서는, 타원적분이 필요하다

 

 

 

단진자의 주기
  • 단진자의 주기는 다음과 같다
    \(T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin\phi}}\,d\phi\). 여기서 \(k=\frac{A}{\sqrt{2}}=\sqrt{\frac{1-\cos\theta_0}{2}}=\sin\frac{\theta_0}{2}\)

(증명)

진자의 속도는 \({d\theta\over dt} = \sqrt{{2g\over \ell}\left(\cos\theta-\cos\theta_0\right)}\) 로 주어진다. 따라서 주기를 다음과 같이 쓸 수 있다.

\(T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta\)

여기서 \(A=\sqrt{1-\cos\theta_0}\) 로 두고, 다음과 같은 치환을 사용하자.

\(\cos\theta-\cos\theta_0=(A\cos\phi)^2\)

그러면,

\(\cos\theta=1-A^2\sin^2\phi\)

\(\sin\theta=\sqrt{1-\cos^2\theta}=A\sin\phi\sqrt{2-A^2\sin\phi}\)

\(\sin\theta \,d\theta=2A^2\cos\phi\sin\phi\) 를 얻는다.

주기를 구하면,

\(T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A^2\cos\phi\sin\phi}{A\cos\phi\sin\theta}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin\phi}{A\sin\phi\sqrt{2-A^2\sin\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2}{\sqrt{2-A^2\sin\phi}}\,d\phi\)

\(A=\sqrt{2}k\)로 두면,

\(T = 4\sqrt{\ell\over {g}}\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin\phi}}\,d\phi\)를 얻는다. ■

 

 

제1종 타원적분과의 관계

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들[[타원적분(통합됨)|]]

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그