"대수적다양체의 제타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
5번째 줄: | 5번째 줄: | ||
− | + | ==개요== | |
* 유한체 <math>\mathbb{F}_q</math> (<math>q=p^n</math>) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수<br> | * 유한체 <math>\mathbb{F}_q</math> (<math>q=p^n</math>) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수<br> | ||
13번째 줄: | 13번째 줄: | ||
− | + | ==로컬 제타함수== | |
* <math>N_r</math> 이 <math>\mathbb{F}_{q^r}</math> 에서의 해의 개수라 하면<br><math>Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})</math><br> | * <math>N_r</math> 이 <math>\mathbb{F}_{q^r}</math> 에서의 해의 개수라 하면<br><math>Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})</math><br> | ||
23번째 줄: | 23번째 줄: | ||
− | + | ==예== | |
* 사영 직선<br><math>N_m = q^m + 1</math><br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br> | * 사영 직선<br><math>N_m = q^m + 1</math><br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br> | ||
33번째 줄: | 33번째 줄: | ||
− | + | ==재미있는 사실== | |
44번째 줄: | 44번째 줄: | ||
− | + | ==역사== | |
56번째 줄: | 56번째 줄: | ||
− | + | ==메모== | |
62번째 줄: | 62번째 줄: | ||
− | + | ==관련된 항목들== | |
* [[타원곡선]]<br> | * [[타원곡선]]<br> | ||
71번째 줄: | 71번째 줄: | ||
− | + | ==수학용어번역== | |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
82번째 줄: | 82번째 줄: | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
96번째 줄: | 96번째 줄: | ||
− | + | ==관련논문== | |
* [http://www.jstor.org/stable/2690080 Why Study Equations over Finite Fields?] , Neal Koblitz, <cite style="line-height: 2em;">Mathematics Magazine</cite>, Vol. 55, No. 3 (May, 1982), pp. 144-149<br> | * [http://www.jstor.org/stable/2690080 Why Study Equations over Finite Fields?] , Neal Koblitz, <cite style="line-height: 2em;">Mathematics Magazine</cite>, Vol. 55, No. 3 (May, 1982), pp. 144-149<br> | ||
108번째 줄: | 108번째 줄: | ||
− | + | ==관련도서== | |
* [http://www.amazon.com/Numbers-Analysis-Zeta-Functions-Graduate-Mathematics/dp/0387960171 p-adic Numbers, p-adic Analysis, and Zeta-Function]<br> | * [http://www.amazon.com/Numbers-Analysis-Zeta-Functions-Graduate-Mathematics/dp/0387960171 p-adic Numbers, p-adic Analysis, and Zeta-Function]<br> |
2012년 11월 1일 (목) 13:26 판
이 항목의 스프링노트 원문주소
개요
- 유한체 \(\mathbb{F}_q\) (\(q=p^n\)) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수
로컬 제타함수
- \(N_r\) 이 \(\mathbb{F}_{q^r}\) 에서의 해의 개수라 하면
\(Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})\) - 소수 \(p\)의 경우 다음과 같이 쓰기도 함
\(Z_p(T):=Z(T,\mathbb{F}_p)\) - \(T=q^{-s}\) 로 쓰면, \(L\)-함수의 로컬인자들을 얻는다
예
- 사영 직선
\(N_m = q^m + 1\)
\(Z(T)=\frac{1}{(1 - T)(1- qT)}\) - \(X_0^2=X_1^2+X_2^2\)
\(Z(T)=\frac{1}{(1 - T)(1- qT)}\) - non-singular 타원곡선 (over \(\mathbb{F}_p\))
\(Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\)
여기서 \(a_p=p+1-\#E(\mathbb{F}_p)\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Weil_conjectures
- http://en.wikipedia.org/wiki/Local_zeta_function
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Why Study Equations over Finite Fields? , Neal Koblitz, Mathematics Magazine, Vol. 55, No. 3 (May, 1982), pp. 144-149
- [1]
Atiyah, M. F. 1976. “Bakerian Lecture, 1975: Global Geometry”. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 347 (1650) (1월 13): 291-299 http://www.jstor.org/stable/78966
관련도서
- p-adic Numbers, p-adic Analysis, and Zeta-Function
- Neal Koblitz, Springer, 1996