"대칭군의 지표(character)에 대한 프로베니우스 공식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→개요) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
* [[슈르 다항식(Schur polynomial)]]을 이용하여, [[대칭군 (symmetric group)]]의 지표를 계산하는 방법 | * [[슈르 다항식(Schur polynomial)]]을 이용하여, [[대칭군 (symmetric group)]]의 지표를 계산하는 방법 | ||
74번째 줄: | 66번째 줄: | ||
\{1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 | \{1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 | ||
\end{array} | \end{array} | ||
+ | |||
+ | |||
+ | ==$S_6$의 예== | ||
+ | * 지표 테이블 | ||
+ | \begin{array}{c|ccccccccccc} | ||
+ | & \{1^6,2^0,3^0,4^0,5^0,6^0\} & \{1^4,2^1,3^0,4^0,5^0,6^0\} & \{1^3,2^0,3^1,4^0,5^0,6^0\} & \{1^2,2^2,3^0,4^0,5^0,6^0\} & \{1^2,2^0,3^0,4^1,5^0,6^0\} & \{1^1,2^1,3^1,4^0,5^0,6^0\} & \{1^1,2^0,3^0,4^0,5^1,6^0\} & \{1^0,2^3,3^0,4^0,5^0,6^0\} & \{1^0,2^1,3^0,4^1,5^0,6^0\} & \{1^0,2^0,3^2,4^0,5^0,6^0\} & \{1^0,2^0,3^0,4^0,5^0,6^1\} \\ | ||
+ | \hline | ||
+ | \{6\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ | ||
+ | \{5,1\} & 5 & 3 & 2 & 1 & 1 & 0 & 0 & -1 & -1 & -1 & -1 \\ | ||
+ | \{4,2\} & 9 & 3 & 0 & 1 & -1 & 0 & -1 & 3 & 1 & 0 & 0 \\ | ||
+ | \{4,1,1\} & 10 & 2 & 1 & -2 & 0 & -1 & 0 & -2 & 0 & 1 & 1 \\ | ||
+ | \{3,3\} & 5 & 1 & -1 & 1 & -1 & 1 & 0 & -3 & -1 & 2 & 0 \\ | ||
+ | \{3,2,1\} & 16 & 0 & -2 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 \\ | ||
+ | \{3,1,1,1\} & 10 & -2 & 1 & -2 & 0 & 1 & 0 & 2 & 0 & 1 & -1 \\ | ||
+ | \{2,2,2\} & 5 & -1 & -1 & 1 & 1 & -1 & 0 & 3 & -1 & 2 & 0 \\ | ||
+ | \{2,2,1,1\} & 9 & -3 & 0 & 1 & 1 & 0 & -1 & -3 & 1 & 0 & 0 \\ | ||
+ | \{2,1,1,1,1\} & 5 & -3 & 2 & 1 & -1 & 0 & 0 & 1 & -1 & -1 & 1 \\ | ||
+ | \{1,1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 | ||
+ | \end{array} | ||
+ | |||
+ | |||
+ | ==$S_7$의 예== | ||
+ | * 지표 테이블 | ||
+ | \begin{array}{c|ccccccccccccccc} | ||
+ | & \{1^7,2^0,3^0,4^0,5^0,6^0,7^0\} & \{1^5,2^1,3^0,4^0,5^0,6^0,7^0\} & \{1^4,2^0,3^1,4^0,5^0,6^0,7^0\} & \{1^3,2^2,3^0,4^0,5^0,6^0,7^0\} & \{1^3,2^0,3^0,4^1,5^0,6^0,7^0\} & \{1^2,2^1,3^1,4^0,5^0,6^0,7^0\} & \{1^2,2^0,3^0,4^0,5^1,6^0,7^0\} & \{1^1,2^3,3^0,4^0,5^0,6^0,7^0\} & \{1^1,2^1,3^0,4^1,5^0,6^0,7^0\} & \{1^1,2^0,3^2,4^0,5^0,6^0,7^0\} & \{1^1,2^0,3^0,4^0,5^0,6^1,7^0\} & \{1^0,2^2,3^1,4^0,5^0,6^0,7^0\} & \{1^0,2^1,3^0,4^0,5^1,6^0,7^0\} & \{1^0,2^0,3^1,4^1,5^0,6^0,7^0\} & \{1^0,2^0,3^0,4^0,5^0,6^0,7^1\} \\ | ||
+ | \hline | ||
+ | \{7\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ | ||
+ | \{6,1\} & 6 & 4 & 3 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\ | ||
+ | \{5,2\} & 14 & 6 & 2 & 2 & 0 & 0 & -1 & 2 & 0 & -1 & -1 & 2 & 1 & 0 & 0 \\ | ||
+ | \{5,1,1\} & 15 & 5 & 3 & -1 & 1 & -1 & 0 & -3 & -1 & 0 & 0 & -1 & 0 & 1 & 1 \\ | ||
+ | \{4,3\} & 14 & 4 & -1 & 2 & -2 & 1 & -1 & 0 & 0 & 2 & 0 & -1 & -1 & 1 & 0 \\ | ||
+ | \{4,2,1\} & 35 & 5 & -1 & -1 & -1 & -1 & 0 & 1 & 1 & -1 & 1 & -1 & 0 & -1 & 0 \\ | ||
+ | \{4,1,1,1\} & 20 & 0 & 2 & -4 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & -1 \\ | ||
+ | \{3,3,1\} & 21 & 1 & -3 & 1 & -1 & 1 & 1 & -3 & -1 & 0 & 0 & 1 & 1 & -1 & 0 \\ | ||
+ | \{3,2,2\} & 21 & -1 & -3 & 1 & 1 & -1 & 1 & 3 & -1 & 0 & 0 & 1 & -1 & 1 & 0 \\ | ||
+ | \{3,2,1,1\} & 35 & -5 & -1 & -1 & 1 & 1 & 0 & -1 & 1 & -1 & -1 & -1 & 0 & 1 & 0 \\ | ||
+ | \{3,1,1,1,1\} & 15 & -5 & 3 & -1 & -1 & 1 & 0 & 3 & -1 & 0 & 0 & -1 & 0 & -1 & 1 \\ | ||
+ | \{2,2,2,1\} & 14 & -4 & -1 & 2 & 2 & -1 & -1 & 0 & 0 & 2 & 0 & -1 & 1 & -1 & 0 \\ | ||
+ | \{2,2,1,1,1\} & 14 & -6 & 2 & 2 & 0 & 0 & -1 & -2 & 0 & -1 & 1 & 2 & -1 & 0 & 0 \\ | ||
+ | \{2,1,1,1,1,1\} & 6 & -4 & 3 & 2 & -2 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\ | ||
+ | \{1,1,1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 | ||
+ | \end{array} | ||
+ | |||
+ | |||
==역사== | ==역사== |
2012년 12월 11일 (화) 08:14 판
개요
- 슈르 다항식(Schur polynomial)을 이용하여, 대칭군 (symmetric group)의 지표를 계산하는 방법
- $S_m$의 기약표현은 크기가 m인 영 다이어그램(또는 m의 분할)과 일대일대응된다
- m의 분할 $\lambda$에 대응되는 $S_m$의 기약표현의 지표를 \(\chi_{\lambda}\) 로 나타내자
- \(C_{\mathbf{i}}=(1^{i_1},2^{i_2},\cdots,m^{i_m})\)를 \(i_1+2i_2+\cdots mi_m=m\)를 만족시키는 대칭군 $S_m$의 공액류라 하면, $\chi_{\lambda}(C_{\mathbf{i}})$ 프로베니우스 공식으로 얻을 수 있다
\[\left(\sum_{l=1}^{m} x_l\right)^{i_1}\left(\sum_{l=1}^{m} x_l^2\right)^{i_2}\cdots \left(\sum_{l=1}^{m} x_l^m\right)^{i_m}=\sum_{\lambda}\chi_{\lambda}(C_{\mathbf{i}})S_{\lambda}\]
여기서 \(S_{\lambda}\) 는 슈르 다항식(Schur polynomial)
- 다음과 같이 표현하기도 한다
\[\prod_{j}P_{j}(x)^{i_j}=\sum_{\lambda}\chi_{\lambda}(C_{\mathbf{i}})S_{\lambda}(x)\]
$S_3$의 예
- 대칭군 \(S_3\) 의 character table
\begin{array}{c|ccc} & \{1^3,2^0,3^0\} & \{1^1,2^1,3^0\} & \{1^0,2^0,3^1\} \\ \hline \{3\} & 1 & 1 & 1 \\ \{2,1\} & 2 & 0 & -1 \\ \{1,1,1\} & 1 & -1 & 1 \end{array}
\(S_{(3)}=x_1 x_2 x_3+\left(x_1+x_2+x_3\right){}^3-2 \left(x_1+x_2+x_3\right) \left(x_1 x_2+x_1 x_3+x_2 x_3\right)\)
\(S_{(2,1)}=\left(x_1+x_2\right) \left(x_1+x_3\right) \left(x_2+x_3\right)\)
\(S_{(1,1,1)}=x_1 x_2 x_3\)
\(S_{(3)}+2S_{(2,1)}+S_{(1,1,1)}=\left(x_1+x_2+x_3\right){}^3\)
\(S_{(3)}+0\cdot S_{(2,1)}-S_{(1,1,1)}=\left(x_1+x_2+x_3\right) \left(x_1^2+x_2^2+x_3^2\right)\)
\(S_{(3)}-1S_{(2,1)}+S_{(1,1,1)}=x_1^3+x_2^3+x_3^3\)
$S_4$의 예
- character table
\begin{array}{c|ccccc} & \{1^4,2^0,3^0,4^0\} & \{1^2,2^1,3^0,4^0\} & \{1^1,2^0,3^1,4^0\} & \{1^0,2^2,3^0,4^0\} & \{1^0,2^0,3^0,4^1\} \\ \hline \{4\} & 1 & 1 & 1 & 1 & 1 \\ \{3,1\} & 3 & 1 & 0 & -1 & -1 \\ \{2,2\} & 2 & 0 & -1 & 2 & 0 \\ \{2,1,1\} & 3 & -1 & 0 & -1 & 1 \\ \{1,1,1,1\} & 1 & -1 & 1 & 1 & -1 \end{array}
$S_5$의 예
- 테이블
\begin{array}{c|ccccccc} & \{1^5,2^0,3^0,4^0,5^0\} & \{1^3,2^1,3^0,4^0,5^0\} & \{1^2,2^0,3^1,4^0,5^0\} & \{1^1,2^2,3^0,4^0,5^0\} & \{1^1,2^0,3^0,4^1,5^0\} & \{1^0,2^1,3^1,4^0,5^0\} & \{1^0,2^0,3^0,4^0,5^1\} \\ \hline \{5\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{4,1\} & 4 & 2 & 1 & 0 & 0 & -1 & -1 \\ \{3,2\} & 5 & 1 & -1 & 1 & -1 & 1 & 0 \\ \{3,1,1\} & 6 & 0 & 0 & -2 & 0 & 0 & 1 \\ \{2,2,1\} & 5 & -1 & -1 & 1 & 1 & -1 & 0 \\ \{2,1,1,1\} & 4 & -2 & 1 & 0 & 0 & 1 & -1 \\ \{1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 \end{array}
$S_6$의 예
- 지표 테이블
\begin{array}{c|ccccccccccc} & \{1^6,2^0,3^0,4^0,5^0,6^0\} & \{1^4,2^1,3^0,4^0,5^0,6^0\} & \{1^3,2^0,3^1,4^0,5^0,6^0\} & \{1^2,2^2,3^0,4^0,5^0,6^0\} & \{1^2,2^0,3^0,4^1,5^0,6^0\} & \{1^1,2^1,3^1,4^0,5^0,6^0\} & \{1^1,2^0,3^0,4^0,5^1,6^0\} & \{1^0,2^3,3^0,4^0,5^0,6^0\} & \{1^0,2^1,3^0,4^1,5^0,6^0\} & \{1^0,2^0,3^2,4^0,5^0,6^0\} & \{1^0,2^0,3^0,4^0,5^0,6^1\} \\ \hline \{6\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{5,1\} & 5 & 3 & 2 & 1 & 1 & 0 & 0 & -1 & -1 & -1 & -1 \\ \{4,2\} & 9 & 3 & 0 & 1 & -1 & 0 & -1 & 3 & 1 & 0 & 0 \\ \{4,1,1\} & 10 & 2 & 1 & -2 & 0 & -1 & 0 & -2 & 0 & 1 & 1 \\ \{3,3\} & 5 & 1 & -1 & 1 & -1 & 1 & 0 & -3 & -1 & 2 & 0 \\ \{3,2,1\} & 16 & 0 & -2 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 \\ \{3,1,1,1\} & 10 & -2 & 1 & -2 & 0 & 1 & 0 & 2 & 0 & 1 & -1 \\ \{2,2,2\} & 5 & -1 & -1 & 1 & 1 & -1 & 0 & 3 & -1 & 2 & 0 \\ \{2,2,1,1\} & 9 & -3 & 0 & 1 & 1 & 0 & -1 & -3 & 1 & 0 & 0 \\ \{2,1,1,1,1\} & 5 & -3 & 2 & 1 & -1 & 0 & 0 & 1 & -1 & -1 & 1 \\ \{1,1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \end{array}
$S_7$의 예
- 지표 테이블
\begin{array}{c|ccccccccccccccc} & \{1^7,2^0,3^0,4^0,5^0,6^0,7^0\} & \{1^5,2^1,3^0,4^0,5^0,6^0,7^0\} & \{1^4,2^0,3^1,4^0,5^0,6^0,7^0\} & \{1^3,2^2,3^0,4^0,5^0,6^0,7^0\} & \{1^3,2^0,3^0,4^1,5^0,6^0,7^0\} & \{1^2,2^1,3^1,4^0,5^0,6^0,7^0\} & \{1^2,2^0,3^0,4^0,5^1,6^0,7^0\} & \{1^1,2^3,3^0,4^0,5^0,6^0,7^0\} & \{1^1,2^1,3^0,4^1,5^0,6^0,7^0\} & \{1^1,2^0,3^2,4^0,5^0,6^0,7^0\} & \{1^1,2^0,3^0,4^0,5^0,6^1,7^0\} & \{1^0,2^2,3^1,4^0,5^0,6^0,7^0\} & \{1^0,2^1,3^0,4^0,5^1,6^0,7^0\} & \{1^0,2^0,3^1,4^1,5^0,6^0,7^0\} & \{1^0,2^0,3^0,4^0,5^0,6^0,7^1\} \\ \hline \{7\} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \{6,1\} & 6 & 4 & 3 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\ \{5,2\} & 14 & 6 & 2 & 2 & 0 & 0 & -1 & 2 & 0 & -1 & -1 & 2 & 1 & 0 & 0 \\ \{5,1,1\} & 15 & 5 & 3 & -1 & 1 & -1 & 0 & -3 & -1 & 0 & 0 & -1 & 0 & 1 & 1 \\ \{4,3\} & 14 & 4 & -1 & 2 & -2 & 1 & -1 & 0 & 0 & 2 & 0 & -1 & -1 & 1 & 0 \\ \{4,2,1\} & 35 & 5 & -1 & -1 & -1 & -1 & 0 & 1 & 1 & -1 & 1 & -1 & 0 & -1 & 0 \\ \{4,1,1,1\} & 20 & 0 & 2 & -4 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & -1 \\ \{3,3,1\} & 21 & 1 & -3 & 1 & -1 & 1 & 1 & -3 & -1 & 0 & 0 & 1 & 1 & -1 & 0 \\ \{3,2,2\} & 21 & -1 & -3 & 1 & 1 & -1 & 1 & 3 & -1 & 0 & 0 & 1 & -1 & 1 & 0 \\ \{3,2,1,1\} & 35 & -5 & -1 & -1 & 1 & 1 & 0 & -1 & 1 & -1 & -1 & -1 & 0 & 1 & 0 \\ \{3,1,1,1,1\} & 15 & -5 & 3 & -1 & -1 & 1 & 0 & 3 & -1 & 0 & 0 & -1 & 0 & -1 & 1 \\ \{2,2,2,1\} & 14 & -4 & -1 & 2 & 2 & -1 & -1 & 0 & 0 & 2 & 0 & -1 & 1 & -1 & 0 \\ \{2,2,1,1,1\} & 14 & -6 & 2 & 2 & 0 & 0 & -1 & -2 & 0 & -1 & 1 & 2 & -1 & 0 & 0 \\ \{2,1,1,1,1,1\} & 6 & -4 & 3 & 2 & -2 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\ \{1,1,1,1,1,1,1\} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \end{array}
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 공액류, conjugacy class
- 지표, character - 대한수학회 수학용어집
- 켤레변형, 공액연산자, conjugacy - 대한수학회 수학용어집
- 류, class - 대한수학회 수학용어집
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트