"라마누잔과 파이"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
57번째 줄: | 57번째 줄: | ||
+ | |||
+ | <h5>재미있는 사실</h5> | ||
+ | |||
+ | * <math>e^{\sqrt{58}\pi}=24591257751.999999822\cdots</math> | ||
62번째 줄: | 66번째 줄: | ||
− | <h5> | + | <h5><br> 역사</h5> |
+ | |||
+ | * Around 1910, the Indian mathematician Srinivasa Ramanujan discovered the formula<br> | ||
+ | |||
+ | ; <math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math> | ||
− | * <math> | + | * William Gosper used this series in 1985 to compute the first 17 million digits of <math>\pi</math>.<br> |
− | + | ||
<h5>관련된 고교수학 또는 대학수학</h5> | <h5>관련된 고교수학 또는 대학수학</h5> | ||
102번째 줄: | 110번째 줄: | ||
** [[3006616/attachments/1360956|ramanujan_pi.nb]] | ** [[3006616/attachments/1360956|ramanujan_pi.nb]] | ||
* http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html 참고 | * http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html 참고 | ||
− | * [http://www. | + | * [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br> |
− | ** | + | ** Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007 |
− | ** < | + | * |
+ | * <br> | ||
+ | * [http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ramapi.html A WZ Proof of Ramanujan's Formula for Pi ]<br> | ||
+ | ** Shalosh B. Ekhad and Doron Zeilberger, `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108. | ||
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P62.pdf Class number three Ramanujan type series for 1/pi]<br> | * [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P62.pdf Class number three Ramanujan type series for 1/pi]<br> | ||
− | ** J. M. Borwein ,P. B. Borwein | + | ** J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993) |
− | + | * | |
− | * | + | ** |
− | ** | ||
− | |||
* Approximations and complex multiplication according to Ramanujan<br> | * Approximations and complex multiplication according to Ramanujan<br> | ||
− | ** D. V. Chudnovsky and G. V. Chudnovsky, | + | ** D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472. |
− | + | * | |
− | * | + | ** |
− | |||
− | ** | ||
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P35.pdf Explicit Ramanujan-type approximations to pi of high order ]<br> | * [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P35.pdf Explicit Ramanujan-type approximations to pi of high order ]<br> | ||
− | ** J. M. Borwein, P. B. Borwein | + | ** J. M. Borwein, P. B. Borwein, 1987 |
− | + | * [http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper6/page1.htm Modular equations and approximations to Pi]<br> | |
− | * [http://www. | + | ** S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372 |
− | ** | ||
− | |||
[http://ko.wikipedia.org/wiki/http://en.wikipedia.org/wiki/ ] | [http://ko.wikipedia.org/wiki/http://en.wikipedia.org/wiki/ ] |
2009년 8월 14일 (금) 10:19 판
간단한 소개
- \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]
정의
- 타원적분 , 자코비 세타함수, 라마누잔의 class invariants 항목 참조
\(q=e^{2\pi i \tau}\)
\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)
\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty \exp(\pi i n^2\tau)\)
\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)
\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)
\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}}d\theta}{\)
\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)
\(K'(k) = K(k')\)
\(E'(k) = E(k')\)
- 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의
\(\lambda^{*}(r):=k(i\sqrt{r})\)
\(\alpha(r):=\frac{E'}{K}-\frac{\pi}{4K^2}\)
- [BB1998] (5.5.16)
\(\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\)
\(x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}\)
\(d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})\)
- \(N=58\) 일 때
\(x_{58}=\frac{1}{99^2}=\frac{1}{9801}\), \(d_n(58)=(1103+26390n)2\sqrt 2\) 이므로 다음을 얻는다
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
라마누잔의 class invariants
- 라마누잔의 class invariants
- \(g_{58}^2=\frac{\sqrt{29}+5}{2}\)
재미있는 사실
- \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)
역사
- Around 1910, the Indian mathematician Srinivasa Ramanujan discovered the formula
- \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
- William Gosper used this series in 1985 to compute the first 17 million digits of \(\pi\).
관련된 고교수학 또는 대학수학
관련된 다른 주제들
- AGM과 파이값의 계산
- 타원적분
- The modular group, j-invariant and the singular moduli
- Hypergeometric functions
- 숫자 163
관련도서 및 추천도서
- [BB1998]Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
- 도서내검색
- 도서검색
참고할만한 자료
- 공식을 구현한 매쓰매티카 파일
- http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html 참고
- Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions
- Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
-
- A WZ Proof of Ramanujan's Formula for Pi
- Shalosh B. Ekhad and Doron Zeilberger, `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
- Class number three Ramanujan type series for 1/pi
- J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
-
- Approximations and complex multiplication according to Ramanujan
- D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
-
- Explicit Ramanujan-type approximations to pi of high order
- J. M. Borwein, P. B. Borwein, 1987
- Modular equations and approximations to Pi
- S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
관련기사
- The Mountains of Pi
- The New Yorker, 1992-3-2
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=라마누잔
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=파이
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=