"라마누잔과 파이"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
44번째 줄: | 44번째 줄: | ||
* '''[BB1998] ''' | * '''[BB1998] ''' | ||
− | * prop 5.6<br><math> | + | * prop 5.6<br><math>\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)</math><br><math>[\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)</math><br> |
+ | * prop 5.7<br><math>K_{1/4}(h)=(1+k^2)^{1/2}K(k)</math> if <math>2hh'=[(g^{12}+g^{-12})/2]^{-1}</math><br> | ||
+ | * Thm 5.6<br><math>\frac{2}{\pi}K(h) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;(gg)^2)</math><br><math>K_{1/4}(h)=(1+k^2)^{1/2}K(k)</math><br> | ||
* '''<br>''' | * '''<br>''' | ||
* (5.5.16)<br><math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math><br><math>x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}</math><br><math>d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})</math><br> | * (5.5.16)<br><math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math><br><math>x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}</math><br><math>d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})</math><br> |
2009년 8월 15일 (토) 01:03 판
간단한 소개
- 라마누잔은 1914년에 다음과 같은 공식을 발표 [RAM1914]
-
- \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
-
- Chudnovsky 형제 [CHU88]
\(\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\)
정의
- 타원적분 , 자코비 세타함수, 라마누잔의 class invariants 항목 참조
\(q=e^{2\pi i \tau}\)
\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)
\(\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}\)
\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)
\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)
\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}}d\theta}{\)
\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)
\(K'(k) = K(k')\)
\(E'(k) = E(k')\)
- 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의
\(\lambda^{*}(r):=k(i\sqrt{r})\)
\(\alpha(r):=\frac{E'}{K}-\frac{\pi}{4K^2}\)
- [BB1998]
- prop 5.6
\(\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)\)
\([\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)\) - prop 5.7
\(K_{1/4}(h)=(1+k^2)^{1/2}K(k)\) if \(2hh'=[(g^{12}+g^{-12})/2]^{-1}\) - Thm 5.6
\(\frac{2}{\pi}K(h) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;(gg)^2)\)
\(K_{1/4}(h)=(1+k^2)^{1/2}K(k)\) - (5.5.16)
\(\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\)
\(x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}\)
\(d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})\)
- \(N=58\) 일 때
\(x_{58}=\frac{1}{99^2}=\frac{1}{9801}\), \(d_n(58)=(1103+26390n)2\sqrt 2\) 이므로 다음을 얻는다
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
라마누잔의 class invariants
- 라마누잔의 class invariants
- \(g_{58}^2=\frac{\sqrt{29}+5}{2}\)
재미있는 사실
- \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)
역사
- Around 1910, the Indian mathematician Srinivasa Ramanujan discovered the formula
- \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
- William Gosper used this series in 1985 to compute the first 17 million digits of \(\pi\).
관련된 고교수학 또는 대학수학
관련된 다른 주제들
- AGM과 파이값의 계산
- 타원적분
- 타원함수
- The modular group, j-invariant and the singular moduli
- Hypergeometric functions
- 숫자 163
관련도서 및 추천도서
- [BB1998]Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Pi
- http://www.wolframalpha.com/input/?i=pi
참고할만한 자료
- 공식을 구현한 매쓰매티카 파일
- http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html 참고
- Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions
- Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
- A WZ Proof of Ramanujan's Formula for Pi
- Shalosh B. Ekhad and Doron Zeilberger, `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
- Class number three Ramanujan type series for 1/pi
- J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
- Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi
- J. M. Borwein, P. B. Borwein and D. H. Bailey, The American Mathematical Monthly, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
- [CHU88]Approximations and complex multiplication according to Ramanujan
- D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
- Explicit Ramanujan-type approximations to pi of high order
- J. M. Borwein, P. B. Borwein, 1987
- [RAM1914]Modular equations and approximations to Pi
- S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
관련기사
- The Mountains of Pi
- The New Yorker, 1992-3-2
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=라마누잔
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=파이
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=