"라플라스 변환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d)
164번째 줄: 164번째 줄:
  
 
 
 
 
 
==관련도서==
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 

2012년 11월 2일 (금) 08:10 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 푸리에 변환의 변형
  • 어떤 미분방정식들의 해를 대수적 조작을 통해 얻을 수 있게 해주는 변환
  • 라플라스 변환을 미분방정식에 응용한 사람은 Oliver Heaviside http://en.wikipedia.org/wiki/Oliver_Heaviside  이다
  • operational calculus 또는 Heaviside calculus 의 도구

 

 

정의

  • 함수 \(f(t)\)에 대한 라플라스 변환을 다음과 같이 정의함
    \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\)

 

 

성질

  • 함수 \(f\)에 대한 도함수의 라플라스 변환은 다음과 같다
    \(\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)\)

 

(정리)

\(f\)가 유계이고, \(t\geq 0\)에서 조각적 연속(piecewise continuous)라 하자.

\(\mathfrak{R}(s)\geq 0\)에서 정의된 함수 \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\) 가 \(\mathfrak{R}(s)\geq 0\)에서 해석함수로 확장되면,

\(\int_0^{\infty} f(t) \,dt\)이 존재하고, \(F(0) = \int_0^{\infty} f(t) \,dt\)가 성립한다. 

 

 

\(\left(\frac{t^ne^t}{n!}\right)'=\frac{t^{n-1}e^t}{(n-1)!}\right+\frac{t^ne^t}{n!}\right\) 로부터 \(\mathcal{L}\left\{\frac{t^{n-1}e^t}{(n-1)!}\right\} = (s-1)\cdot\mathcal{L} \left\{ \frac{t^ne^t}{n!}\right\}\)

\(\mathcal{L}\left\{e^t\right\} = \frac{1}{s-1}\)

\(\mathcal{L}\left\{t e^t\right\} = \frac{1}{(s-1)^2}\)

 

\(\mathcal{L}\left\{\frac{t^2 e^t}{2!}\right\} = \frac{1}{(s-1)^3}\)

 

\(\mathcal{L}\left\{\frac{t^3 e^t}{3!}\right\} = \frac{1}{(s-1)^4}\)

...

 

 

상수계수 미분방정식에의 응용

  • \(y''(t)-2 y'(t)+y(t)=e^t\)
  • 양변에 라플라스 변환을 취하면,
    \(s^2 Y(s)+Y(s)-2 (s Y(s)-1)-s+1=\frac{1}{s-1}\), 여기서 \(Y(s)=\mathcal{L} \left\{ f(t) \right\}\).
  • \(Y(s)=\frac{1}{s-1}-\frac{2}{(s-1)^2}+\frac{1}{(s-1)^3}\)
  • \(y(t)=e^t-2t e^t+\frac{t^2}{2}e^t\) 는 주어진 미분방정식의 해가 된다

 

 

멜린변환과의 관계

  • 푸리에 변환 항목 참조
    \(\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}\)
  • 멜린변환에서 \(x=e^{-t}\)로 변수를 치환하면, 라플라스 변환을 얻는다
    \(\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt\)

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

관련논문