푸리에 변환

수학노트
이동: 둘러보기, 검색

개요

  • 아벨군 \(G\)과 불변측도, 캐릭터 \(\chi:G\to \mathbb{C}\)그 위에 정의된 함수 \(f:G \to \mathbb C\), 에 대하여 푸리에 변환을 다음과 같이 정의\[\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg\]



유한아벨군의 경우

  • \(G=(\mathbb Z/N\mathbb Z)^{*}\)와 준동형사상 \(f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}\)의 경우

\[\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}\] 여기서 \( \zeta = e^{2\pi i/N}\)


푸리에변환

  • 리 아벨군으로서의 \(G=(\mathbb{R}^n, +)\) 과 \(f:G \to \mathbb C\) 에 대하여 푸리에변환을 다음과 같이 정의

\[\hat{f}(\mathbf{\xi}) := \int_{\mathbb{R}^n} f(\mathbf{x}) e^{- 2\pi i \mathbf{x}\cdot \mathbf{\xi}}\,d\mathbf{x}\]


1차원 푸리에 변환의 예

$$ \begin{array}{c|c} f(x) & \hat{f}(\xi) \\ \hline e^{\alpha \left(-x^2\right)} & \frac{\sqrt{\pi } e^{-\frac{\pi ^2 \xi ^2}{\alpha }}}{\sqrt{\alpha }} \\ e^{i \pi \left(\tau x^2+2 x z\right)} & \frac{e^{-\frac{i \pi (z-\xi )^2}{\tau }}}{\sqrt{-i \tau }} \end{array} $$


2차원 푸리에 변환의 예

$$ \begin{array}{c|c} f(x) & \hat{f}(\xi) \\ \hline e^{-\pi t \left(x_1^2+x_2 x_1+x_2^2\right)} & \frac{2 e^{-\frac{4 \pi \left(\xi _1^2-\xi _2 \xi _1+\xi _2^2\right)}{3 t}}}{\sqrt{3} t} \end{array} $$



멜린 변환

재미있는 사실

역사



관련된 항목들



매스매티카 파일 및 계산 리소스



사전형태의 자료



관련기사