"로그 탄젠트 적분(log tangent integral)"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;"> | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">쇼1</h5> |
68번째 줄: | 68번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">쇼2</h5> | ||
+ | |||
+ | |||
104번째 줄: | 110번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">메모</h5> | ||
+ | |||
+ | * [http://www.wolframalpha.com/input/?i=integrate_0%5E%28pi%29+x+cos+x+%2F%281%2Bsin%5E2+x%29 http://www.wolframalpha.com/input/?i=integrate_0^(pi)+x+cos+x+%2F(1%2Bsin^2+x)]<br> | ||
+ | * [http://www.wolframalpha.com/input/?i=log%5E2+%281%2Bsqrt%282%29%29+-pi%5E2%2F4 http://www.wolframalpha.com/input/?i=log^2+(1%2Bsqrt(2))+-pi^2%2F4]<br> | ||
110번째 줄: | 123번째 줄: | ||
* [[등차수열의 소수분포에 관한 디리클레 정리]]<br> | * [[등차수열의 소수분포에 관한 디리클레 정리]]<br> | ||
− | * [[ | + | * [[L-함수, 제타함수와 디리클레 급수|디리클레 급수]]<br> |
* [[후르비츠 제타함수(Hurwitz zeta function)|Hurwitz 제타함수]]<br> | * [[후르비츠 제타함수(Hurwitz zeta function)|Hurwitz 제타함수]]<br> | ||
* [[감마함수]]<br> | * [[감마함수]]<br> | ||
136번째 줄: | 149번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> | ||
− | |||
− | |||
* [http://www.springerlink.com/content/p2k0106727416271/?p=03915f5244d74523b6d36406299c80d5&pi=6 A class of logarithmic integrals]<br> | * [http://www.springerlink.com/content/p2k0106727416271/?p=03915f5244d74523b6d36406299c80d5&pi=6 A class of logarithmic integrals]<br> | ||
160번째 줄: | 171번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> | ||
− | |||
− | |||
* [http://www.amazon.com/Irresistible-Integrals-Symbolics-Experiments-Evaluation/dp/0521796369 Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals]<br> | * [http://www.amazon.com/Irresistible-Integrals-Symbolics-Experiments-Evaluation/dp/0521796369 Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals]<br> |
2009년 10월 7일 (수) 18:38 판
쇼1
\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{\pi}{2}\ln{\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi}\)
증명
\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{d}{ds}\Gamma(s)\beta(s)|_{s=1}\) 임을 먼저 보이자
여기서 \(\Gamma(s)\)는 감마함수,\(\beta(s)\)는 디리클레 베타함수.
\(F(s)=\sum_{n=1}^{\infty}\frac{f(n)}{n^s}\) 라 하자.
\(\Gamma(s)F(s)=\int_0^{\infty}(\sum_{n=1}^{\infty}f(n)e^{-nt})t^{s-1}\,dt\)\(z=e^{-t}\) 로 치환하면,
\(\Gamma(s)F(s)=\int_0^{1}(\sum_{n=1}^{\infty}f(n)z^n)(\log\frac{1}{z})^{s-1}\,\frac{dz}{z}\)
만약 \(f(n+q)=f(n)\) 을 만족하면 (가령 디리클레 캐릭터의 경우)
\(p(z)=\sum_{n=1}^{q-1}f(n)z^n\)라면, \(\sum_{n=1}^{\infty}f(n)z^n=\frac{p(z)}{1-z^q}\) 로 쓸 수 있다.
이를 이용하면,
\(\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\,\frac{dz}{z}\) 를 얻는다.
\(\frac{d}{ds}\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}\)
\(s=1\) 에서 \(F(s)\)가 미분가능하다면,
\(F'(1)-\gamma F(1)=\int_0^{1}\frac{p(z)}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}\)
\(f\)가 \(f(3)=-1\)인 주기가 4인 디리클레 캐릭터라고 하면, \(p(z)=z-z^3\)
\(\beta(s) = \sum_{n\geq 1}\frac{f(n)}{n^s}\)
\(\beta'(1)-\gamma \frac{\pi}{4}=\int_0^{1}\frac{z-z^3}{1-z^4}\log \log\frac{1}{z} \,\frac{dz}{z}=\int_0^{1}\log \log\frac{1}{z} \,\frac{dz}{1+z^2}=\int_1^{\infty}\log \log u \,\frac{du}{1+u^2}\)
\(=\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx\)
이제 디리클레 베타함수에서 얻은 결과를 사용하자.
\(\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)
따라서
\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\beta'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln{\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi}\)
(증명끝)
쇼2
Gradshteyn and Ryzhik
http://www.math.tulane.edu/~vhm/Table.html
The integrals in Gradshteyn and Ryzhik. Part 1: A family of logarithmic integrals.
[1]Victor H. Moll
재미있는 사실
역사
메모
- http://www.wolframalpha.com/input/?i=integrate_0^(pi)+x+cos+x+%2F(1%2Bsin^2+x)
- http://www.wolframalpha.com/input/?i=log^2+(1%2Bsqrt(2))+-pi^2%2F4
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- A class of logarithmic integrals
- Luis A. Medina1 and Victor H. Moll, The Ramanujan Journal, Volume 20, Number 1 / 2009년 10월
- On Some Integrals Involving the Hurwitz Zeta Function: Part 1
- Olivier Espinosa and Victor H. Moll
- On Some Integrals Involving the Hurwitz Zeta Function: Part 2
- Olivier Espinosa and Victor H. Moll
- A class of logarithmic integrals
- Victor Adamchik, 1997
- Integrals, an Introduction to Analytic Number Theory
- Ilan Vardi, The American Mathematical Monthly, Vol. 95, No. 4 (Apr., 1988), pp. 308-315
관련도서 및 추천도서
- Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals
- George Boros and Victor Moll
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그
블로그
- 오늘의 계산 12
- 수학 잡담/오늘의 계산, 2008/08/10
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=오늘의계산