"로저스 다이로그 함수 (Rogers dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
100번째 줄: 100번째 줄:
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
<h5>매스매티카 파일 및 계산 리소스[[4855791/attachments/5260564|]]</h5>
  
* [[4855791/attachments/5260564|로저스_다이로그_함수_(Roger_s_dilogarithm).nb]]
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZGMwYzhkZjItMmY5Ny00NDI4LTgxYjktN2E2NDlkNmNjMjAz&sort=name&layout=list&num=50
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/

2011년 12월 9일 (금) 13:31 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

정의
  • \(x\in (0,1)\)에서 로저스 다이로그 함수를 다음과 같이 정의
    \(L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(y)}{1-y}dy\)
  • \((-\infty,0],[1,\+\infty)\)를 제외한 복소평면으로 해석적확장됨
  • \(dL(x)=\frac{1}{2}[{\log(y)d\log (1-y)-\log(1-y)}d\log (y)}]\)

 

 

 

함수의 그래프
  • \(x\in (0,1)\) 에서의 그래프

[/pages/4855791/attachments/3056365 Roger_dilogarithm.jpg]

 

 

 

반사공식(오일러)
  • \(0\leq x \leq 1\) 일 때
    \(L(x)+L(1-x)=L(1)\)

 

 

5항 관계식
  • \(0\leq x,y\leq 1\) 일 때, 
    \(L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\Left( \frac{1-x}{1-xy} )\right)=\frac{\pi^2}{2}\)

 

 

 

special values

\(L(0)=0\)

\(L(1)=\frac{\pi^2}{6}\)

\(L(-1)=-\frac{\pi^2}{12}\)

\(L(\frac{1}{2})=\frac{\pi^2}{12}\)

\(L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}\)

\(L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스[[4855791/attachments/5260564|]]

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서