"2차원 회전 변환과 SO(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
*  평면에서 원점을 중심으로 각도 <math>\theta </math> 만큼의 회전시키는 변환 <math>R_{\theta}: \mathbb{R}^2\to \mathbb{R}^2</math>은 다음 행렬로 표현된다 :<math>R_{\theta}=\begin{pmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}</math>
 +
* 두 회전변환 <math>R_{\theta_1}</math>과 <math>R_{\theta_2}</math>의 합성 <math>R_{\theta_2}\circ R_{\theta_1}</math>은 또다른 회전변환 <math>R_{\theta_1+\theta_2}</math>과 같으며, 이는 삼각함수의 덧셈공식을 통해 이해할 수 있다 :<math>\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}</math>
 +
*  2차원 회전변환들의 집합은 군의 구조를 갖는다
 +
* 단위원과 평면의 회전변환 군은 군론의 입장에서 같다
 +
 +
 +
 +
 +
 +
==길이의 보존==
 +
 +
* <math>(x',y')=(x \cos (\theta )-y \sin (\theta ),x \sin (\theta )+y \cos (\theta ) )</math>이면, <math>x^2+y^2=(x')^2+(y')^2</math> 이 성립한다
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
* Math Overflow http://mathoverflow.net/search?q=
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[삼각함수에는 왜 공식이 많은가?]]
 +
* [[반사 변환]]
 +
* [[한글과 기하학적 변환]]
 +
* [[이차곡선(원뿔곡선)]]
 +
* [[3차원 공간의 회전과 SO(3)]]
 +
* [[직교군과 직교리대수]]
 +
* [[로렌츠 변환과 로렌츠 군]]
 +
* [[아핀 변환]]
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
* http://docs.google.com/leaf?id=0B8XXo8Tve1cxMjJiMDAyZDMtYTMzMi00ZDI1LWE4ZGUtMjc5MjQ4YWY0OGUx&sort=name&layout=list&num=50
 +
 +
 +
 +
 +
 +
[[분류:기하학적 변환]]
 +
[[분류:리군과 리대수]]

2020년 12월 28일 (월) 01:49 기준 최신판

개요

  • 평면에서 원점을 중심으로 각도 \(\theta \) 만큼의 회전시키는 변환 \(R_{\theta}: \mathbb{R}^2\to \mathbb{R}^2\)은 다음 행렬로 표현된다 \[R_{\theta}=\begin{pmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}\]
  • 두 회전변환 \(R_{\theta_1}\)과 \(R_{\theta_2}\)의 합성 \(R_{\theta_2}\circ R_{\theta_1}\)은 또다른 회전변환 \(R_{\theta_1+\theta_2}\)과 같으며, 이는 삼각함수의 덧셈공식을 통해 이해할 수 있다 \[\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}\]
  • 2차원 회전변환들의 집합은 군의 구조를 갖는다
  • 단위원과 평면의 회전변환 군은 군론의 입장에서 같다



길이의 보존

  • \((x',y')=(x \cos (\theta )-y \sin (\theta ),x \sin (\theta )+y \cos (\theta ) )\)이면, \(x^2+y^2=(x')^2+(y')^2\) 이 성립한다



메모



관련된 항목들


매스매티카 파일 및 계산 리소스