직교군과 직교리대수

수학노트
이동: 둘러보기, 검색

특수직교리대수

  • $F=\mathbb{R}$ 또는 $\mathbb{C}$
  • $\mathfrak{so}(n,F)=\{X\in M_n(F) : X^t=-X\}$

기저와 교환관계식

  • $L_{i,j}=E_{i,j}-E_{j,i}$는 $\mathfrak{so}(n,F)$의 기저이며 다음과 같은 교환관계식을 만족한다

$$ \left[L_{i,j},L_{k,l}\right]=\delta_{j,k} L_{i,l} + \delta_{i,l} L_{j,k}- \delta_{i,k} L_{j,l}-\delta_{j,l}L_{i,k} $$


$\mathfrak{so}(3,F)$의 예

  • 기저는 다음과 같다

$$ L_{1,2}=\left( \begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right), L_{1,3}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \\ \end{array} \right), L_{2,3}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \\ \end{array} \right) $$


메모


관련된 항목들


수학용어번역

  • special - 대한수학회 수학용어집
  • orthogonal - 대한수학회 수학용어집


사전형태의 자료