"분할수가 만족시키는 합동식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 20개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* 라마누잔의 발견
 +
* 분할수가 만족시키는 합동식
 +
:<math>p(5k+4)\equiv 0 \pmod 5</math>
 +
:<math>p(7k+5)\equiv 0 \pmod 7</math>
 +
:<math>p(11k+6)\equiv 0 \pmod {11}</math>
 +
* [[분할의 rank와 crank]]
 +
 +
 +
 +
==항등식==
 +
* 분할수가 만족시키는 합동식을 설명하는 항등식
 +
:<math>\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}=5+30 q+135 q^2+490 q^3+1575 q^4+4565 q^5+\cdots </math>
 +
:<math>\sum_{k=0}^\infty p(7k+5)q^k=7\frac{(q^7;q^7)_\infty^3}{(q;q)_\infty^4}+49q\frac{(q^7;q^7)_\infty^7}{(q;q)_\infty^8}=7+77 q+490 q^2+2436 q^3+10143 q^4+37338 q^5+\cdots</math>
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
 +
==관련된 항목들==
 +
* [[자연수의 분할(partition)과 rank/crank 목록]]
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxeTk0akpqa09XYXM/edit
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
* http://en.wikipedia.org/wiki/Ramanujan's_congruences
 +
 +
 +
[[분류:q-급수]]
 +
[[분류:분할수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7288989 Q7288989]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'ramanujan'}, {'LOWER': "'s"}, {'LEMMA': 'congruence'}]

2021년 2월 17일 (수) 04:45 기준 최신판

개요

  • 라마누잔의 발견
  • 분할수가 만족시키는 합동식

\[p(5k+4)\equiv 0 \pmod 5\] \[p(7k+5)\equiv 0 \pmod 7\] \[p(11k+6)\equiv 0 \pmod {11}\]


항등식

  • 분할수가 만족시키는 합동식을 설명하는 항등식

\[\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}=5+30 q+135 q^2+490 q^3+1575 q^4+4565 q^5+\cdots \] \[\sum_{k=0}^\infty p(7k+5)q^k=7\frac{(q^7;q^7)_\infty^3}{(q;q)_\infty^4}+49q\frac{(q^7;q^7)_\infty^7}{(q;q)_\infty^8}=7+77 q+490 q^2+2436 q^3+10143 q^4+37338 q^5+\cdots\]



메모

관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'ramanujan'}, {'LOWER': "'s"}, {'LEMMA': 'congruence'}]