"버치와 스위너톤-다이어 추측"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 2명의 중간 판 14개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* 타원곡선의 rank는 잘 알려져 있지 않다 | * 타원곡선의 rank는 잘 알려져 있지 않다 | ||
* Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다 | * Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다 | ||
− | + | ||
− | + | ||
− | + | ==유리수해== | |
* <math>E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}</math> | * <math>E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}</math> | ||
− | + | ||
− | + | ||
− | + | ==타원곡선의 L-함수== | |
* Hasse-Weil 제타함수라고도 함 | * Hasse-Weil 제타함수라고도 함 | ||
− | * 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨 | + | * 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨:<math>L(s,E)=\prod_p L_p (s,E)^{-1}</math> 여기서 :<math>L_p(s,E)=\left\{\begin{array}{ll}(1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p \nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\ 1, & \mbox{if }p^2|N \end{array}\right.</math> |
− | * | + | * 여기서 <math>a_p</math>는 유한체위에서의 해의 개수와 관련된 정수 |
− | + | ||
− | + | ||
− | + | ==추측== | |
− | * <math>E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}</math>의 rank r은 <math>\operatorname{Ord}_{s=1}L(s,E)</math>와 같다 | + | * <math>E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}</math>의 rank r은 <math>\operatorname{Ord}_{s=1}L(s,E)</math>와 같다 |
− | + | ||
− | + | ||
− | + | Coates-Wiles theorem | |
− | + | ||
− | + | ||
− | |||
− | + | ||
− | + | ==역사== | |
− | + | * The Birch and Swinnerton-Dyer conjecture has been proved only in special cases : | |
− | + | # In 1976 [http://en.wikipedia.org/wiki/John_Coates_%28mathematician%29 John Coates] and [http://en.wikipedia.org/wiki/Andrew_Wiles Andrew Wiles] proved that if <em>E</em> is a curve over a number field <em>F</em> with complex multiplication by an imaginary quadratic field <em>K</em> of [http://en.wikipedia.org/wiki/Class_number_ %28 number_theory %29 class number] 1, <em>F=K</em> or '''Q''', and <em>L(E,1)</em> is not 0 then <em>E</em> has only a finite number of rational points. This was extended to the case where <em>F</em> is any finite abelian extension of <em>K</em> by Nicole Arthaud-Kuhman, who shared an office with Wiles when both were students of Coates at Stanford. | |
+ | # In 1983 [http://en.wikipedia.org/wiki/Benedict_Gross Benedict Gross] and [http://en.wikipedia.org/wiki/Don_Zagier Don Zagier] showed that if a [http://en.wikipedia.org/wiki/Modular_elliptic_curve modular elliptic curve] has a first-order zero at <em>s</em> = 1 then it has a rational point of infinite order; see [http://en.wikipedia.org/wiki/Gross% E2 %80 %93 Zagier_theorem Gross\[Dash]Zagier theorem]. | ||
+ | # In 1990 [http://en.wikipedia.org/wiki/Victor_Kolyvagin Victor Kolyvagin] showed that a modular elliptic curve <em>E</em> for which <em>L(E,1)</em> is not zero has rank 0, and a modular elliptic curve <em>E</em> for which <em>L(E,1)</em> has a first-order zero at <em>s</em> = 1 has rank 1. | ||
+ | # In 1991 [http://en.wikipedia.org/wiki/Karl_Rubin Karl Rubin] showed that for elliptic curves defined over an imaginary quadratic field <em>K</em> with complex multiplication by <em>K</em>, if the <em>L</em>-series of the elliptic curve was not zero at <em>s=1</em>, then the <em>p</em>-part of the Tate-Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes <em>p > 7</em>. | ||
+ | # In 1999 [http://en.wikipedia.org/wiki/Andrew_Wiles Andrew Wiles], [http://en.wikipedia.org/wiki/Christophe_Breuil Christophe Breuil], [http://en.wikipedia.org/wiki/Brian_Conrad Brian Conrad], [http://en.wikipedia.org/wiki/Fred_Diamond Fred Diamond] and [http://en.wikipedia.org/wiki/Richard_Taylor_ %28 mathematician %29 Richard Taylor] proved that all elliptic curves defined over the rational numbers are modular (the [http://en.wikipedia.org/wiki/Taniyama-Shimura_theorem Taniyama-Shimura theorem]), which extends results 2 and 3 to all elliptic curves over the rationals. | ||
+ | * Nothing has been proved for curves with rank greater than 1, although there is extensive numerical evidence for the truth of the conjecture. | ||
+ | * [[수학사 연표]] | ||
+ | |||
+ | |||
− | * http://www. | + | ==메모== |
− | + | * [http://www.sms.cam.ac.uk/media/1131073 Interview of Sir Peter Swinnerton-Dyer] | |
− | |||
− | |||
− | + | ==관련된 항목들== | |
− | + | * [[타니야마-시무라 추측(정리)]] | |
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
+ | * {{forvo|url=Birch}} | ||
+ | * {{forvo|url=Swinnerton-Dyer}} | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture | * http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==리뷰, 에세이, 강의노트== | |
+ | * http://mattbakerblog.wordpress.com/2014/03/10/the-bsd-conjecture-is-true-for-most-elliptic-curves/ | ||
+ | * Wiles, A. "[http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf The Birch and Swinnerton-Dyer Conjecture] | ||
− | |||
− | |||
− | |||
− | |||
− | * [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3] | + | |
+ | |||
+ | ==관련논문== | ||
+ | * Bruin, Peter, and Andrea Ferraguti. “On <math>L</math>-Functions of Quadratic <math>\mathbb{Q}</math>-Curves.” arXiv:1511.09001 [math], November 29, 2015. http://arxiv.org/abs/1511.09001. | ||
+ | * Ota, Kazuto. “Kato’s Euler System and the Mazur-Tate Refined Conjecture of BSD Type.” arXiv:1509.00682 [math], September 2, 2015. http://arxiv.org/abs/1509.00682. | ||
+ | * Balakrishnan, Jennifer, Ishai Dan-Cohen, Minhyong Kim, and Stefan Wewers. ‘A Non-Abelian Conjecture of Birch and Swinnerton-Dyer Type for Hyperbolic Curves’. arXiv:1209.0640 [math], 4 September 2012. http://arxiv.org/abs/1209.0640. | ||
+ | * [http://www.mathnet.ru/eng/im1191 Finiteness of E(Q) and Sha(E, Q) for a subclass of Weil curves] | ||
+ | ** V. Kolyvagin, (transl.) Math. USSR-Izv. 32 (1989), no. 3, 523--541 | ||
+ | * [http://dx.doi.org/10.1007%2FBF01458081 Heegner points and derivatives of L-series. II] | ||
+ | ** Gross, B.; Kohnen, W.; Zagier, D. (1987), Mathematische Annalen 278 (1\[Dash]4): 497-562 | ||
+ | * [http://dx.doi.org/10.1007%2FBF01388809 Heegner points and derivatives of L-series] | ||
+ | ** Gross, Benedict H.; Zagier, Don B. (1986), Inventiones Mathematicae 84 (2): 225-320 | ||
+ | * [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3] | ||
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481 | ** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481 | ||
− | + | ==메타데이터== | |
− | + | ===위키데이터=== | |
− | + | * ID : [https://www.wikidata.org/wiki/Q671993 Q671993] | |
− | + | ===Spacy 패턴 목록=== | |
− | + | * [{'LOWER': 'john'}, {'LOWER': 'h.'}, {'LEMMA': 'Coates'}] | |
− | + | * [{'LOWER': 'john'}, {'LOWER': 'henry'}, {'LEMMA': 'Coates'}] | |
− | + | * [{'LOWER': 'john'}, {'LEMMA': 'Coates'}] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [ | ||
− | * [ | ||
− | * [ | ||
− |
2021년 2월 17일 (수) 03:47 기준 최신판
개요
- 타원곡선의 rank는 잘 알려져 있지 않다
- Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다
유리수해
- \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)
타원곡선의 L-함수
- Hasse-Weil 제타함수라고도 함
- 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨\[L(s,E)=\prod_p L_p (s,E)^{-1}\] 여기서 \[L_p(s,E)=\left\{\begin{array}{ll}(1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p \nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\ 1, & \mbox{if }p^2|N \end{array}\right.\]
- 여기서 \(a_p\)는 유한체위에서의 해의 개수와 관련된 정수
추측
- \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)의 rank r은 \(\operatorname{Ord}_{s=1}L(s,E)\)와 같다
Coates-Wiles theorem
역사
- The Birch and Swinnerton-Dyer conjecture has been proved only in special cases :
- In 1976 John Coates and Andrew Wiles proved that if E is a curve over a number field F with complex multiplication by an imaginary quadratic field K of %28 number_theory %29 class number 1, F=K or Q, and L(E,1) is not 0 then E has only a finite number of rational points. This was extended to the case where F is any finite abelian extension of K by Nicole Arthaud-Kuhman, who shared an office with Wiles when both were students of Coates at Stanford.
- In 1983 Benedict Gross and Don Zagier showed that if a modular elliptic curve has a first-order zero at s = 1 then it has a rational point of infinite order; see E2 %80 %93 Zagier_theorem Gross\[DashZagier theorem].
- In 1990 Victor Kolyvagin showed that a modular elliptic curve E for which L(E,1) is not zero has rank 0, and a modular elliptic curve E for which L(E,1) has a first-order zero at s = 1 has rank 1.
- In 1991 Karl Rubin showed that for elliptic curves defined over an imaginary quadratic field K with complex multiplication by K, if the L-series of the elliptic curve was not zero at s=1, then the p-part of the Tate-Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes p > 7.
- In 1999 Andrew Wiles, Christophe Breuil, Brian Conrad, Fred Diamond and %28 mathematician %29 Richard Taylor proved that all elliptic curves defined over the rational numbers are modular (the Taniyama-Shimura theorem), which extends results 2 and 3 to all elliptic curves over the rationals.
- Nothing has been proved for curves with rank greater than 1, although there is extensive numerical evidence for the truth of the conjecture.
- 수학사 연표
메모
관련된 항목들
수학용어번역
- Birch - 발음사전 Forvo
- Swinnerton-Dyer - 발음사전 Forvo
사전 형태의 자료
리뷰, 에세이, 강의노트
- http://mattbakerblog.wordpress.com/2014/03/10/the-bsd-conjecture-is-true-for-most-elliptic-curves/
- Wiles, A. "The Birch and Swinnerton-Dyer Conjecture
관련논문
- Bruin, Peter, and Andrea Ferraguti. “On \(L\)-Functions of Quadratic \(\mathbb{Q}\)-Curves.” arXiv:1511.09001 [math], November 29, 2015. http://arxiv.org/abs/1511.09001.
- Ota, Kazuto. “Kato’s Euler System and the Mazur-Tate Refined Conjecture of BSD Type.” arXiv:1509.00682 [math], September 2, 2015. http://arxiv.org/abs/1509.00682.
- Balakrishnan, Jennifer, Ishai Dan-Cohen, Minhyong Kim, and Stefan Wewers. ‘A Non-Abelian Conjecture of Birch and Swinnerton-Dyer Type for Hyperbolic Curves’. arXiv:1209.0640 [math], 4 September 2012. http://arxiv.org/abs/1209.0640.
- Finiteness of E(Q) and Sha(E, Q) for a subclass of Weil curves
- V. Kolyvagin, (transl.) Math. USSR-Izv. 32 (1989), no. 3, 523--541
- Heegner points and derivatives of L-series. II
- Gross, B.; Kohnen, W.; Zagier, D. (1987), Mathematische Annalen 278 (1\[Dash]4): 497-562
- Heegner points and derivatives of L-series
- Gross, Benedict H.; Zagier, Don B. (1986), Inventiones Mathematicae 84 (2): 225-320
- On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3
- Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
메타데이터
위키데이터
- ID : Q671993
Spacy 패턴 목록
- [{'LOWER': 'john'}, {'LOWER': 'h.'}, {'LEMMA': 'Coates'}]
- [{'LOWER': 'john'}, {'LOWER': 'henry'}, {'LEMMA': 'Coates'}]
- [{'LOWER': 'john'}, {'LEMMA': 'Coates'}]