"초기하 미분방정식(Hypergeometric differential equations)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 31개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[초기하 미분방정식(Hypergeometric differential equations)]]
+
* <math>0,1,\infty</math> 세 점에서 [[정규특이점(regular singular points)]]을 가지는 [[이계 선형 미분방정식]]
 +
*  다음과 같은 미분방정식을 말함
 +
:<math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math>
 +
*  리만구면 상의 세 점에서 정규특이점을 갖는 미분방정식은 초기하미분방정식으로 변형가능
 +
*  19세기에 활발하게 연구
 +
*  Fuchsian 미분방정식의 간단하고 중요한 예로 이론의 모델을 제공
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
==급수해==
  
* <math>0,1,\infty</math> 세 점에서 정규특이점을 가지는 2계 선형 미분방정식<br>
+
* 프로베니우스 급수해 방법으로 찾을 수 있다 [http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation ]http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
다음과 같은 미분방정식을 말함<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
+
다음 급수는 초기하 미분방정식의 해이다:<math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math> 여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>는 [[Pochhammer 기호와 캐츠(Kac) 기호]]
  
* 리만구면 상의 네 점에서 정규특이점을 갖는 미분방정식은 초기하미분방정식으로 변형가능<br>
+
   
  
* 19세기에 활발하게 연구<br>
+
   
*  Fuchsian 미분방정식의 간단하고 중요한 예로 이론의 모델을 제공<br>
 
  
 
+
==선형독립인 해==
  
 
+
* <math>z=0</math>에서의 급수해:<math>_2F_1(a,b;c;z)</math>:<math>z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)</math>
  
<h5 style="margin: 0px; line-height: 2em;">급수해</h5>
+
  
<math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math>
+
  
여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>는 [[Pochhammer 기호와 캐츠(Kac) 기호]]
+
==쿰머의 24개 해==
  
 
+
* [[쿰머의 24개 초기하 미분방정식의 해|쿰머의 초기하 미분방정식의 24개 해]]
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">쿰머의 24개 해</h5>
+
  
* <math>0,1,\infty</math> 각 세 점에서의 급수해를 통해 서로 다른 여섯개의 해를 얻고, [[오일러-가우스 초기하함수2F1|오일러-가우스 초기하함수]]에 서술된 오일러 변환을 통해 각 해의 여섯가지 표현을 얻어 24개를 얻는다<br>
+
==메모==
* <math>z=0</math>에서의 급수해<br><math>_2F_1(a,b;c;z)</math><br><math>z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)</math><br>
+
* http://www.sfb45.de/events/summer-school-on-local-systems
* <math>z=1</math>에서의 급수해<br><math>_2F_1(a,b;a+b+1-c;1-z)</math><br><math>(1-z)^{c-a-b}{}_2F_1(c-a,c-b;c+1-a-b;1-z)</math><br>
+
* [http://www.johndcook.com/blog/2010/11/11/the-grand-unified-theory-of-19th-century-math/ The grand unified theory of 19th century math]
* <math>z=\infty</math>에서의 급수해<br><math>z^{-a}{}_2F_1(a,a+1-c;a+1-b;z^{-1})</math><br><math>z^{-b}{}_2F_1(b+1-c,b;b+1-a;z^{-1})</math><br>
 
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
==역사==
  
 
+
* [[수학사 연표]]
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
  
* [[수학사연표 (역사)|수학사연표]]
+
==관련된 항목들==
 +
* [[미분방정식]]
 +
* [[이계 선형 미분방정식]]
 +
* [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-초기하급수]]
 +
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
 +
* [[슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)|Schwarz-Christoffel mappings]]
 +
* [[르장드르 다항식]]
  
 
+
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
  
* [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-초기하급수]]<br>
+
==매스매티카 파일 및 계산 리소스==
* [[슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)|Schwarz-Christoffel mappings]]<br>
 
  
 
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxNkNhZEU1d1dUMDA/edit
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
  
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
==사전 형태의 자료==
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/hypergeometric_functions
 +
* http://en.wikipedia.org/wiki/List_of_hypergeometric_identities
 
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation
 
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation
 
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
 
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
* http://www.wolframalpha.com/input/?i=
 
  
 
 
  
 
+
==리뷰논문, 에세이, 강의노트==
 +
* Gert Heckman [http://www.math.ru.nl/~heckman/tsinghua.pdf Tsinghua Lectures on Hypergeometric Functions], 2013
 +
* Frits Beukers, [http://pages.uoregon.edu/njp/beukers.pdf Notes on differential equations and hypergeometric functions], 2009
 +
* Frits Beukers, [http://www.staff.science.uu.nl/~beuke106/springschool99.pdf Hypergeometric functions in one variable], 2008
 +
* Beukers, Frits. 2007. “Gauss’ Hypergeometric Function”. In Arithmetic and Geometry Around Hypergeometric Functions, edited by : Rolf-Peter Holzapfel, A. Muhammed Uludağ and Masaaki Yoshida, 23–42. Progress in Mathematics 260. Birkhäuser Basel. http://link.springer.com/chapter/10.1007/978-3-7643-8284-1_2.
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
  
* [http://users.ugent.be/%7Ejvdjeugt/files/tex/kummer2.pdf The finite group of the Kummer solutions]<br>
+
==관련논문==
** S. Lievens, K. Srinivasa Rao and J. Van der Jeugt
 
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br>
 
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
 
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
==관련도서==
  
* [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]<br>
+
* [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]
** Zeev Nehari, Dover Publications, 1982-1
+
** Zeev Nehari, Dover Publications, 1982-1
 
** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]]
 
** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]]
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
==메타데이터==
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1640931 Q1640931]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'frobenius'}, {'LOWER': 'solution'}, {'LOWER': 'to'}, {'LOWER': 'the'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'equation'}]

2021년 2월 17일 (수) 05:00 기준 최신판

개요

\[z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\]

  • 리만구면 상의 세 점에서 정규특이점을 갖는 미분방정식은 초기하미분방정식으로 변형가능
  • 19세기에 활발하게 연구
  • Fuchsian 미분방정식의 간단하고 중요한 예로 이론의 모델을 제공



급수해



선형독립인 해

  • \(z=0\)에서의 급수해\[_2F_1(a,b;c;z)\]\[z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)\]



쿰머의 24개 해



메모



역사



관련된 항목들




매스매티카 파일 및 계산 리소스



사전 형태의 자료


리뷰논문, 에세이, 강의노트


관련논문

관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'frobenius'}, {'LOWER': 'solution'}, {'LOWER': 'to'}, {'LOWER': 'the'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'equation'}]