"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 폴리로그 함수(polylogarithm)로 바꾸었습니다.)
 
(사용자 2명의 중간 판 47개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
* [[다이로그 함수(dilogarithm)]] 의 일반화
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
  
 
+
  
 
+
==정의==
 +
:<math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}</math>
 +
:<math>\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}</math>
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
  
 
+
  
* Math Overflow http://mathoverflow.net/search?q=
+
==로그함수==
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
* [[로그 함수]]
 +
:<math>-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots</math>
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
  
 
+
==역사==
 +
 
 +
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
 
  
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
  
 
+
==메모==
 +
* Scheider, René. “The de Rham Realization of the Elliptic Polylogarithm in Families.” arXiv:1408.3819 [math], August 17, 2014. http://arxiv.org/abs/1408.3819.
 +
* Jameson, [http://www.maths.lancs.ac.uk/~jameson/polylog.pdf Polylogarithms, multiple zeta values, and the series of Hjortnaes and Comtet]
 +
* http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities
 +
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 +
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl
 +
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]
 +
* [http://www.maths.dur.ac.uk/%7Ed40ppt/pdf/John_Rhodes.pdf http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf]
  
 
+
==관련된 항목들==
 +
* [[원주율의 BBP 공식]]
 +
* [[로그 사인 적분 (log sine integrals)]]
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 
  
 
 
  
 
+
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
 
  
 +
==사전 형태의 자료==
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Polylogarithm
 
* http://en.wikipedia.org/wiki/Polylogarithm
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 
  
* 네이버 뉴스 검색 (키워드 수정)<br>
+
   
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
==리뷰논문, 에세이, 강의노트==
 +
* Vergu, C. “Polylogarithm Identities, Cluster Algebras and the N=4 Supersymmetric Theory.” arXiv:1512.08113 [hep-Th], December 26, 2015. http://arxiv.org/abs/1512.08113.
 +
* John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008
 +
* Bowman, Douglas, and David M. Bradley. “Multiple Polylogarithms: A Brief Survey.” arXiv:math/0310062, October 5, 2003. http://arxiv.org/abs/math/0310062.
 +
* Hain, Richard. “Classical Polylogarithms.” arXiv:alg-geom/9202022, February 20, 1992. http://arxiv.org/abs/alg-geom/9202022.
 +
* Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.
 +
* Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )
  
 
+
==관련논문==
 +
* Ngoc Hoang, Gérard Duchamp, Hoang Ngoc Minh, The algebra of Kleene stars of the plane and polylogarithms, arXiv:1602.02801[math.CO], February 05 2016, http://arxiv.org/abs/1602.02801v2, 10.1145/1235, http://dx.doi.org/10.1145/1235
 +
* Kenji Sakugawa, Shin-ichiro Seki, Finite and étale polylogarithms, http://arxiv.org/abs/1603.05811v1
 +
* Frellesvig, Hjalte, Damiano Tommasini, and Christopher Wever. “On the Reduction of Generalized Polylogarithms to <math>\text{Li}_n</math> and <math>\text{Li}_{2,2}</math> and on the Evaluation Thereof.” arXiv:1601.02649 [hep-Ph], January 11, 2016. http://arxiv.org/abs/1601.02649.
 +
* Henn, Johannes M., Alexander V. Smirnov, and Vladimir A. Smirnov. “Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six.” arXiv:1512.08389 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 28, 2015. http://arxiv.org/abs/1512.08389.
 +
* Rudenko, Daniil. “On the Functional Equations for Polylogarithms in One Variable.” arXiv:1511.09110 [math], November 2, 2015. http://arxiv.org/abs/1511.09110.
 +
* Sakugawa, Kenji, and Shin-ichiro Seki. “On Functional Equations of Finite Multiple Polylogarithms.” arXiv:1509.07653 [math], September 25, 2015. http://arxiv.org/abs/1509.07653.
 +
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of <math>\zeta(3)</math> and <math>\zeta(5)</math>] D. J. Broadhurst, 1998
 +
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 +
*  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
 +
*  The classical polylogarithms, algebraic K-theory and <math>\zeta_F(n)</math>, Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
[[분류:다이로그]]
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID : [https://www.wikidata.org/wiki/Q1238449 Q1238449]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LEMMA': 'polylogarithm'}]
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 05:06 기준 최신판

개요




정의

\[\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\] \[\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\]



로그함수

\[-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\]



역사




메모

관련된 항목들



사전 형태의 자료


리뷰논문, 에세이, 강의노트

  • Vergu, C. “Polylogarithm Identities, Cluster Algebras and the N=4 Supersymmetric Theory.” arXiv:1512.08113 [hep-Th], December 26, 2015. http://arxiv.org/abs/1512.08113.
  • John R. Rhodes Polylogarithms ,2008
  • Bowman, Douglas, and David M. Bradley. “Multiple Polylogarithms: A Brief Survey.” arXiv:math/0310062, October 5, 2003. http://arxiv.org/abs/math/0310062.
  • Hain, Richard. “Classical Polylogarithms.” arXiv:alg-geom/9202022, February 20, 1992. http://arxiv.org/abs/alg-geom/9202022.
  • Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.
  • Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )

관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'polylogarithm'}]