"힐베르트 행렬"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지에 힐버트_행렬.nb 파일을 등록하셨습니다.)
 
(사용자 2명의 중간 판 21개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
* [[코쉬 행렬과 행렬식|코쉬 행렬]]의 특별한 경우
 +
* [[항켈 행렬과 행렬식|항켈 행렬]]의 예
 +
* 크기 <math>n</math>인 힐베르트 행렬 <math>H=(H_{ij})_{1\leq i,j\leq n}</math>의 성분은 <math>H_{ij} = \frac{1}{i+j-1}</math>로 주어진다
  
 
+
 +
==예==
 +
:<math>
 +
\left(
 +
\begin{array}{c}
 +
1 \\
 +
\end{array}
 +
\right)
 +
</math>
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
:<math>
 +
\left(
 +
\begin{array}{cc}
 +
1 & \frac{1}{2} \\
 +
\frac{1}{2} & \frac{1}{3} \\
 +
\end{array}
 +
\right)
 +
</math>
 +
 +
:<math>
 +
\left(
 +
\begin{array}{ccc}
 +
1 & \frac{1}{2} & \frac{1}{3} \\
 +
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
 +
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
 +
\end{array}
 +
\right)
 +
</math>
  
* [[코쉬 행렬과 행렬식|코쉬 행렬]] 의 특별한 경우<br>
+
:<math>
* <math>H_{ij} = \frac{1}{i+j-1}</math><br>
+
\left(
 +
\begin{array}{cccc}
 +
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
 +
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
 +
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
 +
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
 +
\end{array}
 +
\right)
 +
</math>
  
 
+
:<math>
 +
\left(
 +
\begin{array}{ccccc}
 +
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
 +
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
 +
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
 +
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
 +
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\
 +
\end{array}
 +
\right)
 +
</math>
  
 
+
==행렬식==
 
 
<h5 style="line-height: 2em; margin: 0px;">행렬식</h5>
 
  
 
<math>\det(H)={{c_n^{\;4}}\over {c_{2n}}}</math>
 
<math>\det(H)={{c_n^{\;4}}\over {c_{2n}}}</math>
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
<math>c_n = \prod_{i=1}^{n-1} i^{n-i}=\prod_{i=1}^{n-1} i!</math>
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 
 
 
 
 
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 
  
* [[Glaisher–Kinkelin 상수]]<br>
 
  
 
+
==관련된 항목들==
  
 
+
* [[Glaisher–Kinkelin 상수]]
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
 +
==매스매티카 파일 및 계산 리소스==
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZWU3NWQ5ZGYtNWUzZC00NzEyLTgwZGUtNmMwZjEzMmVmOGIx&sort=name&layout=list&num=50
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
==사전 형태의 자료==
 
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Hilbert_matrix
 
* http://en.wikipedia.org/wiki/Hilbert_matrix
 
* http://mathworld.wolfram.com/HilbertMatrix.html
 
* http://mathworld.wolfram.com/HilbertMatrix.html
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
  
 +
==관련논문==
 
* Choi, M.-D. "Tricks or Treats with the Hilbert Matrix." Amer. Math. Monthly 90, 301-312, 1983.
 
* Choi, M.-D. "Tricks or Treats with the Hilbert Matrix." Amer. Math. Monthly 90, 301-312, 1983.
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
[[분류:선형대수학]]
 +
[[분류:행렬식]]
  
*  구글 블로그 검색<br>
+
==메타데이터==
** [http://blogsearch.google.com/blogsearch?q=%ED%9E%90%EB%B2%84%ED%8A%B8%ED%96%89%EB%A0%AC http://blogsearch.google.com/blogsearch?q=힐버트행렬]
+
===위키데이터===
** http://blogsearch.google.com/blogsearch?q=
+
* ID : [https://www.wikidata.org/wiki/Q612991 Q612991]
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'hilbert'}, {'LEMMA': 'matrix'}]
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 02:30 기준 최신판

개요

  • 코쉬 행렬의 특별한 경우
  • 항켈 행렬의 예
  • 크기 \(n\)인 힐베르트 행렬 \(H=(H_{ij})_{1\leq i,j\leq n}\)의 성분은 \(H_{ij} = \frac{1}{i+j-1}\)로 주어진다


\[ \left( \begin{array}{c} 1 \\ \end{array} \right) \]

\[ \left( \begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \\ \end{array} \right) \]

\[ \left( \begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \end{array} \right) \]

\[ \left( \begin{array}{cccc} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \end{array} \right) \]

\[ \left( \begin{array}{ccccc} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\ \end{array} \right) \]

행렬식

\(\det(H)={{c_n^{\;4}}\over {c_{2n}}}\)

\(c_n = \prod_{i=1}^{n-1} i^{n-i}=\prod_{i=1}^{n-1} i!\)


관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료



관련논문

  • Choi, M.-D. "Tricks or Treats with the Hilbert Matrix." Amer. Math. Monthly 90, 301-312, 1983.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hilbert'}, {'LEMMA': 'matrix'}]