"대수적다양체의 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
64번째 줄: 64번째 줄:
 
==관련논문==
 
==관련논문==
  
* [http://www.jstor.org/stable/2690080 Why Study Equations over Finite Fields?] , Neal Koblitz, <cite style="line-height: 2em;">Mathematics Magazine</cite>, Vol. 55, No. 3 (May, 1982), pp. 144-149
+
* Koblitz, Neal. 1982. Why Study Equations over Finite Fields? Mathematics Magazine 55, no. 3 (May 1): 144-149. doi:[http://dx.doi.org/10.2307/2690080 10.2307/2690080].
 
* Atiyah, M. F. 1976. “Bakerian Lecture, 1975: Global Geometry”. <em>Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences</em> 347 (1650) (1월 13): 291-299 http://www.jstor.org/stable/78966
 
* Atiyah, M. F. 1976. “Bakerian Lecture, 1975: Global Geometry”. <em>Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences</em> 347 (1650) (1월 13): 291-299 http://www.jstor.org/stable/78966
 +
  
 
==관련도서==
 
==관련도서==
71번째 줄: 72번째 줄:
 
* [http://www.amazon.com/Numbers-Analysis-Zeta-Functions-Graduate-Mathematics/dp/0387960171 p-adic Numbers, p-adic Analysis, and Zeta-Function]
 
* [http://www.amazon.com/Numbers-Analysis-Zeta-Functions-Graduate-Mathematics/dp/0387960171 p-adic Numbers, p-adic Analysis, and Zeta-Function]
 
** Neal Koblitz, Springer, 1996
 
** Neal Koblitz, Springer, 1996
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1479613 Q1479613]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'weil'}, {'LEMMA': 'conjecture'}]
 +
* [{'LOWER': 'deligne'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]

2021년 2월 17일 (수) 04:02 기준 최신판

개요

  • 유한체 \(\mathbb{F}_q\) (\(q=p^n\)) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수


로컬 제타함수

  • \(N_r\) 이 \(\mathbb{F}_{q^r}\) 에서의 해의 개수라 하면

\[Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})\]

  • 소수 \(p\)의 경우 다음과 같이 쓰기도 함

\[Z_p(T):=Z(T,\mathbb{F}_p)\]

  • \(T=q^{-s}\) 로 쓰면, \(L\)-함수의 로컬인자들을 얻는다



  • 사영 직선\[N_m = q^m + 1\]

\[Z(T)=\frac{1}{(1 - T)(1- qT)}\]

  • \(X_0^2=X_1^2+X_2^2\)\[Z(T)=\frac{1}{(1 - T)(1- qT)}\]
  • non-singular 타원곡선 (over \(\mathbb{F}_p\))

\[Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\] 여기서 \(a_p=p+1-\#E(\mathbb{F}_p)\)



역사



메모

관련된 항목들



사전 형태의 자료


관련논문

  • Koblitz, Neal. 1982. Why Study Equations over Finite Fields? Mathematics Magazine 55, no. 3 (May 1): 144-149. doi:10.2307/2690080.
  • Atiyah, M. F. 1976. “Bakerian Lecture, 1975: Global Geometry”. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 347 (1650) (1월 13): 291-299 http://www.jstor.org/stable/78966


관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'weil'}, {'LEMMA': 'conjecture'}]
  • [{'LOWER': 'deligne'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]