"Q-초기하급수의 점근 급수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 9개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[#]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
* <math>a>0,x>0,b\in\mathbb{R}</math>라 두자
+
* <math>a>0,b\in\mathbb{R}</math>라 두자
* z>0는 방정식 <math>1-x=zx^{a}</math> 의 해라 하자.
+
* <math>x>0</math>방정식 <math>1-x=x^{a}</math> 의 해라 하자.
* 다음 근사식이 성립함 '''[McIntosh1995]''' :<math>\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (-\frac{1}{\log q}\{\operatorname{Li}_2(zx^{a})+\frac{a}{2}\log^2 x\})</math> 또는 :<math>\sum_{n=0}^{\infty}\frac{z^nq^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \frac{x^b}{\sqrt{x+a(1-x)}} \exp (\frac{L(1-x)}{t})</math>   이 때, <math>q=e^{-t}</math>.
+
* <math>q=e^{-t}</math> 이고 <math>t\to 0</math> 일 때, 다음의 점근 급수를 얻는다 '''[McIntosh1995]'''  
 
+
:<math>\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right)+\frac{\operatorname{Li}_2(x^{a})+\frac{a}{2}\log^2 x}{t}</math> 또는  
 
+
:<math>\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right) +\frac{L(1-x)}{t}</math>  
 +
여기서 <math>L</math>은 [[로저스 다이로그 함수 (Rogers' dilogarithm)]]
  
 
 
  
 
==예==
 
==예==
 +
*  <math>A=1/2</math>인 경우
 +
:<math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})</math>
 +
:<math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})</math>
 +
*  <math>A=1</math>인 경우 [[베버(Weber) 모듈라 함수]]
 +
:<math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>:<math>2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>:<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 +
*  <math>A=2</math>인 경우 [[로저스-라마누잔 항등식]]
 +
:<math>\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})</math>
 +
:<math>\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})</math>
  
*  A=1/2 (3,5) minimal model<br><math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math><br><math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math><br>
 
 
*  A=1 (3,4) minimal model<br><math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math><br><math>2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math><br><math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math><br>
 
*  A=2 (2,5) minimal model [[로저스-라마누잔 항등식]]<br><math>\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)</math><br><math>\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)</math><br>
 
  
 
 
 
 
 
 
 
 
  
 
==역사==
 
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
+
  
 
+
  
 
==메모==
 
==메모==
  
 
+
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
  
* [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]]
+
* [[로저스 다이로그 함수 (Rogers' dilogarithm)]]
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxODk1ZjBiYWEtYjMyOS00MDdmLTg1ZjItMTJhOTA0MzZmYmY5/edit
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
 
* [[매스매티카 파일 목록]]
 
 
 
 
 
 
 
 
==수학용어번역==
 
 
*  단어사전<br>
 
** http://www.google.com/dictionary?langpair=en|ko&q=
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
  
 
+
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
  
 
+
  
 
+
  
 
==관련논문==
 
==관련논문==
  
 
* '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series] Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136
 
* '''[McIntosh1995]'''[http://jlms.oxfordjournals.org/cgi/content/abstract/51/1/120 Some Asymptotic Formulae for q-Hypergeometric Series] Richard J. McIntosh, Journal of the London Mathematical Society 1995 51(1):120-136
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
+
 +
[[분류:q-급수]]

2020년 11월 16일 (월) 03:55 기준 최신판

개요

  • \(a>0,b\in\mathbb{R}\)라 두자
  • \(x>0\)는 방정식 \(1-x=x^{a}\) 의 해라 하자.
  • \(q=e^{-t}\) 이고 \(t\to 0\) 일 때, 다음의 점근 급수를 얻는다 [McIntosh1995]

\[\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right)+\frac{\operatorname{Li}_2(x^{a})+\frac{a}{2}\log^2 x}{t}\] 또는 \[\log \sum_{n=0}^{\infty}\frac{q^{\frac{a}{2}n^2+bn}}{(q)_n}\sim \log \left(\frac{x^b}{\sqrt{x+a(1-x)}}\right) +\frac{L(1-x)}{t}\] 여기서 \(L\)은 로저스 다이로그 함수 (Rogers' dilogarithm)


  • \(A=1/2\)인 경우

\[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})\] \[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})\]

\[\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\]\[2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]\[\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]

\[\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})\] \[\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})\]


역사



메모



관련된 항목들



매스매티카 파일 및 계산 리소스


리뷰논문, 에세이, 강의노트

관련논문