"버치와 스위너톤-다이어 추측"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
54번째 줄: 54번째 줄:
 
    
 
    
 
   
 
   
 +
 +
==메모==
 +
* [http://www.sms.cam.ac.uk/media/1131073 Interview of Sir Peter Swinnerton-Dyer]
 +
 +
 
==관련된 항목들==
 
==관련된 항목들==
  
84번째 줄: 89번째 줄:
  
 
==관련논문==
 
==관련논문==
 
+
* Bruin, Peter, and Andrea Ferraguti. “On <math>L</math>-Functions of Quadratic <math>\mathbb{Q}</math>-Curves.” arXiv:1511.09001 [math], November 29, 2015. http://arxiv.org/abs/1511.09001.
 +
* Ota, Kazuto. “Kato’s Euler System and the Mazur-Tate Refined Conjecture of BSD Type.” arXiv:1509.00682 [math], September 2, 2015. http://arxiv.org/abs/1509.00682.
 +
* Balakrishnan, Jennifer, Ishai Dan-Cohen, Minhyong Kim, and Stefan Wewers. ‘A Non-Abelian Conjecture of Birch and Swinnerton-Dyer Type for Hyperbolic Curves’. arXiv:1209.0640 [math], 4 September 2012. http://arxiv.org/abs/1209.0640.
 
* [http://www.mathnet.ru/eng/im1191 Finiteness of E(Q) and Sha(E, Q) for a subclass of Weil curves]
 
* [http://www.mathnet.ru/eng/im1191 Finiteness of E(Q) and Sha(E, Q) for a subclass of Weil curves]
 
** V. Kolyvagin, (transl.) Math. USSR-Izv. 32 (1989), no. 3, 523--541
 
** V. Kolyvagin, (transl.) Math. USSR-Izv. 32 (1989), no. 3, 523--541
93번째 줄: 100번째 줄:
 
* [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3]
 
* [http://www.jstor.org/stable/2007967 On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3]
 
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
 
** Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q671993 Q671993]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'john'}, {'LOWER': 'h.'}, {'LEMMA': 'Coates'}]
 +
* [{'LOWER': 'john'}, {'LOWER': 'henry'}, {'LEMMA': 'Coates'}]
 +
* [{'LOWER': 'john'}, {'LEMMA': 'Coates'}]

2021년 2월 17일 (수) 03:47 기준 최신판

개요

  • 타원곡선의 rank는 잘 알려져 있지 않다
  • Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다



유리수해

  • \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)



타원곡선의 L-함수

  • Hasse-Weil 제타함수라고도 함
  • 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨\[L(s,E)=\prod_p L_p (s,E)^{-1}\] 여기서 \[L_p(s,E)=\left\{\begin{array}{ll}(1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p \nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\ 1, & \mbox{if }p^2|N \end{array}\right.\]
  • 여기서 \(a_p\)는 유한체위에서의 해의 개수와 관련된 정수



추측

  • \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)의 rank r은 \(\operatorname{Ord}_{s=1}L(s,E)\)와 같다



Coates-Wiles theorem




역사

  • The Birch and Swinnerton-Dyer conjecture has been proved only in special cases :
  1. In 1976 John Coates and Andrew Wiles proved that if E is a curve over a number field F with complex multiplication by an imaginary quadratic field K of %28 number_theory %29 class number 1, F=K or Q, and L(E,1) is not 0 then E has only a finite number of rational points. This was extended to the case where F is any finite abelian extension of K by Nicole Arthaud-Kuhman, who shared an office with Wiles when both were students of Coates at Stanford.
  2. In 1983 Benedict Gross and Don Zagier showed that if a modular elliptic curve has a first-order zero at s = 1 then it has a rational point of infinite order; see E2 %80 %93 Zagier_theorem Gross\[DashZagier theorem].
  3. In 1990 Victor Kolyvagin showed that a modular elliptic curve E for which L(E,1) is not zero has rank 0, and a modular elliptic curve E for which L(E,1) has a first-order zero at s = 1 has rank 1.
  4. In 1991 Karl Rubin showed that for elliptic curves defined over an imaginary quadratic field K with complex multiplication by K, if the L-series of the elliptic curve was not zero at s=1, then the p-part of the Tate-Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes p > 7.
  5. In 1999 Andrew Wiles, Christophe Breuil, Brian Conrad, Fred Diamond and %28 mathematician %29 Richard Taylor proved that all elliptic curves defined over the rational numbers are modular (the Taniyama-Shimura theorem), which extends results 2 and 3 to all elliptic curves over the rationals.
  • Nothing has been proved for curves with rank greater than 1, although there is extensive numerical evidence for the truth of the conjecture.
  • 수학사 연표


메모


관련된 항목들



수학용어번역


사전 형태의 자료



리뷰, 에세이, 강의노트



관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'john'}, {'LOWER': 'h.'}, {'LEMMA': 'Coates'}]
  • [{'LOWER': 'john'}, {'LOWER': 'henry'}, {'LEMMA': 'Coates'}]
  • [{'LOWER': 'john'}, {'LEMMA': 'Coates'}]