"Singular moduli의 대각합 (traces of singular moduli)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* singular moduli의 대각합 $\mathbf{t}(d)$
+
* singular moduli의 대각합 <math>\mathbf{t}(d)</math>
$$
+
:<math>
 
\mathbf{t}(d):=\sum_{Q\in \mathcal{Q}_d/\Gamma} \frac{1}{w_Q}J(\alpha_Q)
 
\mathbf{t}(d):=\sum_{Q\in \mathcal{Q}_d/\Gamma} \frac{1}{w_Q}J(\alpha_Q)
$$
+
</math>
 
* 생성함수는 weight 3/2인 모듈라 형식이 된다
 
* 생성함수는 weight 3/2인 모듈라 형식이 된다
  
 
==singular moduli의 대각합==
 
==singular moduli의 대각합==
 
;정의
 
;정의
$d\in \mathbb{Z}_{>0}$에 대하여,  
+
<math>d\in \mathbb{Z}_{>0}</math>에 대하여,  
$$
+
:<math>
 
\mathbf{t}(d):=\sum_{Q\in \mathcal{Q}_d/\Gamma} \frac{1}{w_Q}J(\alpha_Q)
 
\mathbf{t}(d):=\sum_{Q\in \mathcal{Q}_d/\Gamma} \frac{1}{w_Q}J(\alpha_Q)
$$
+
</math>
 
여기서
 
여기서
* $\mathcal{Q}_d$$-d=b^2-4ac$를 만족하는 [[정수계수 이변수 이차형식(binary integral quadratic forms)]] $Q=[a,b,c]=ax^2+bxy+cy^2$의 집합
+
* <math>\mathcal{Q}_d</math><math>-d=b^2-4ac</math>를 만족하는 [[정수계수 이변수 이차형식(binary integral quadratic forms)]] <math>Q=[a,b,c]=ax^2+bxy+cy^2</math>의 집합
* 모듈라군 $\Gamma=PSL(2,\mathbb{Z})$$\mathcal{Q}_d$에 작용
+
* 모듈라군 <math>\Gamma=PSL(2,\mathbb{Z})</math><math>\mathcal{Q}_d</math>에 작용
* 각각의 $Q$에 대하여, 자기동형군 $\Gamma_{Q}$을 생각, $w_{Q}=|\Gamma_{Q}|$,
+
* 각각의 <math>Q</math>에 대하여, 자기동형군 <math>\Gamma_{Q}</math>을 생각, <math>w_{Q}=|\Gamma_{Q}|</math>,
 
:<math>
 
:<math>
 
w_{Q} =   
 
w_{Q} =   
23번째 줄: 23번째 줄:
 
1\mbox{ otherwise}.   
 
1\mbox{ otherwise}.   
 
\end{cases}</math>
 
\end{cases}</math>
* $J(z):=j(z)-744$, $j$는 [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)]]
+
* <math>J(z):=j(z)-744</math>, <math>j</math>는 [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)]]
* $\alpha_Q\in \mathbb{C}$는 허수부가 양수인 $ax^2+bx+c=0$의 해
+
* <math>\alpha_Q\in \mathbb{C}</math>는 허수부가 양수인 <math>ax^2+bx+c=0</math>의 해
  
 
==생성함수==
 
==생성함수==
* weight이 3/2인 모듈라 형식 $g_1$을 생각하자
+
* weight이 3/2인 모듈라 형식 <math>g_1</math>을 생각하자
 
:<math>g_1(z)=\theta_1(\tau)\frac{E_4(4\tau)}{\eta(4\tau)^6}=q^{-1}-2+248q^3-492q^4+4119q^7-7256q^8+\cdots</math>
 
:<math>g_1(z)=\theta_1(\tau)\frac{E_4(4\tau)}{\eta(4\tau)^6}=q^{-1}-2+248q^3-492q^4+4119q^7-7256q^8+\cdots</math>
 
이 때,
 
이 때,
93번째 줄: 93번째 줄:
  
 
==관련논문==
 
==관련논문==
* Beneish, Lea, and Claire Frechette. “$p$-Adic Properties of Certain Half-Integral Weight Modular Forms.” arXiv:1509.00383 [math], September 1, 2015. http://arxiv.org/abs/1509.00383.
+
* Beneish, Lea, and Claire Frechette. “<math>p</math>-Adic Properties of Certain Half-Integral Weight Modular Forms.” arXiv:1509.00383 [math], September 1, 2015. http://arxiv.org/abs/1509.00383.
 
* Bruinier, Jan Hendrik, and Yingkun Li. “Heegner Divisors in Generalized Jacobians and Traces of Singular Moduli.” arXiv:1508.07112 [math], August 28, 2015. http://arxiv.org/abs/1508.07112.
 
* Bruinier, Jan Hendrik, and Yingkun Li. “Heegner Divisors in Generalized Jacobians and Traces of Singular Moduli.” arXiv:1508.07112 [math], August 28, 2015. http://arxiv.org/abs/1508.07112.
 
* “Traces of CM Values of Modular Functions : Journal Fur Die Reine Und Angewandte Mathematik (Crelles Journal).”http://www.degruyter.com/view/j/crll.2006.2006.issue-594/crelle.2006.034/crelle.2006.034.xml.
 
* “Traces of CM Values of Modular Functions : Journal Fur Die Reine Und Angewandte Mathematik (Crelles Journal).”http://www.degruyter.com/view/j/crll.2006.2006.issue-594/crelle.2006.034/crelle.2006.034.xml.

2020년 11월 13일 (금) 21:46 기준 최신판

개요

  • singular moduli의 대각합 \(\mathbf{t}(d)\)

\[ \mathbf{t}(d):=\sum_{Q\in \mathcal{Q}_d/\Gamma} \frac{1}{w_Q}J(\alpha_Q) \]

  • 생성함수는 weight 3/2인 모듈라 형식이 된다

singular moduli의 대각합

정의

\(d\in \mathbb{Z}_{>0}\)에 대하여, \[ \mathbf{t}(d):=\sum_{Q\in \mathcal{Q}_d/\Gamma} \frac{1}{w_Q}J(\alpha_Q) \] 여기서

\[ w_{Q} = \begin{cases} 2\mbox{ if } Q\sim [a,0,a] \\ 3\mbox{ if } Q\sim [a,a,a] \\ 1\mbox{ otherwise}. \end{cases}\]

생성함수

  • weight이 3/2인 모듈라 형식 \(g_1\)을 생각하자

\[g_1(z)=\theta_1(\tau)\frac{E_4(4\tau)}{\eta(4\tau)^6}=q^{-1}-2+248q^3-492q^4+4119q^7-7256q^8+\cdots\] 이 때, \[\theta_{1}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2},\] \[E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n},\] \[\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n}),\]

  • \(B(d)\)는 \(g_1(z)\)의 푸리에 계수

\[g_1(z)=\sum_{d \geq -1} B(d)q^d\]


정리 (Zagier)

다음이 성립한다 \[\mathbf{t}(d)=-B(d)\]

테이블

\begin{array}{c|c} d & \mathbf{t}(d) \\ \hline -1 & 1 \\ 0 & 2 \\ 3 & -248 \\ 4 & 492 \\ 7 & -4119 \\ 8 & 7256 \\ 11 & -33512 \\ 12 & 53008 \\ 15 & -192513 \\ 16 & 287244 \\ 19 & -885480 \\ 20 & 1262512 \\ 23 & -3493982 \\ 24 & 4833456 \\ 27 & -12288992 \\ 28 & 16576512 \\ 31 & -39493539 \\ 32 & 52255768 \\ 35 & -117966288 \\ 36 & 153541020 \\ 39 & -331534572 \\ 40 & 425691312 \\ 43 & -884736744 \\ 44 & 1122626864 \\ 47 & -2257837845 \\ 48 & 2835861520 \\ \end{array}

메모

  • Kaneko, M., The Fourier coefficients and the singular moduli of the elliptic modular function j(τ), Mem. Fac.Eng. Design, Kyoto Inst. Tech. 19 (1996), 1–5.
  • Kaneko, M., Traces of singular moduli and the Fourier coefficients of the elliptic modular function j(τ), CRM Proceedings and Lecture Notes 19 (1999), 173–176.
  • Goro Shimura established in his series of works the general principle that, the “arithmeticity” of modular forms (in far general setting) induced from the algebraicity of Fourier coefficients, and the one induced from the algebraicity of values at CM (complex multiplication) points, are equivalent.


관련된 항목들


매스매티카 파일 및 계산 리소스

리뷰, 에세이, 강의노트


관련논문