"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
* N bosons interacting on the line $[0,L]$ of length L via the delta function potential
+
* N bosons interacting on the line <math>[0,L]</math> of length L via the delta function potential
 
* one-dimensional Bose gas
 
* one-dimensional Bose gas
* 1963 Lieb and Liniger solved by [[Bethe ansatz]]
+
* 1963 Lieb and Liniger solved by [[Bethe ansatz]]
 
* In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit
 
* In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit
 
+
  
 
==Hamiltonian==
 
==Hamiltonian==
  
*  quantum mechanical Hamiltonian
+
*  quantum mechanical Hamiltonian
:<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math><br>
+
:<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math>
 
+
  
  
 
==wave function==
 
==wave function==
* $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
+
* <math>\psi(x_1, x_2, \dots, x_j, \dots,x_N)</math>
* $\psi(x_1, \dots, x_N) =  \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$
+
* <math>\psi(x_1, \dots, x_N) =  \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)</math>
$$
+
:<math>
 
a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi}  -k_{Pj}}\right) \ .  
 
a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi}  -k_{Pj}}\right) \ .  
$$
+
</math>
  
  
 
==two-body scattering term==
 
==two-body scattering term==
  
* <math>s_{ab}=k_a-k_b+ic</math><br>
+
* <math>s_{ab}=k_a-k_b+ic</math>
  
  
31번째 줄: 31번째 줄:
 
:<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math>
 
:<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math>
  
 
+
  
 
==energy spectrum==
 
==energy spectrum==
37번째 줄: 37번째 줄:
 
:<math>E=\sum_{j=1}^{N}k_j^2</math>
 
:<math>E=\sum_{j=1}^{N}k_j^2</math>
  
 
+
  
 
==related items==
 
==related items==
  
 
+
  
 
==computational resource==
 
==computational resource==
67번째 줄: 67번째 줄:
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6543926 Q6543926]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'lieb'}, {'OP': '*'}, {'LOWER': 'liniger'}, {'LEMMA': 'model'}]

2021년 2월 17일 (수) 03:16 기준 최신판

introduction

  • N bosons interacting on the line \([0,L]\) of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz
  • In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit


Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]


wave function

  • \(\psi(x_1, x_2, \dots, x_j, \dots,x_N)\)
  • \(\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)\)

\[ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . \]


two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]


energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]


related items

computational resource

encyclopedia


articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'lieb'}, {'OP': '*'}, {'LOWER': 'liniger'}, {'LEMMA': 'model'}]