"가우스의 놀라운 정리(Theorema Egregium)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 8개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 +
*  학부 미분기하학에서 배우게 되는 중요한 정리 중의 하나
 +
*  가우스 곡률은 곡면이 얼마나 휘어 있는가를 재는 양
 +
*  이 가우스 곡률은 그 곡면의 거리와 각도를 재는 것으로 알수 있다는 정리
  
* 학부 미분기하학에서 배우게 되는 중요한 정리 중의 하나<br>
+
   
*  가우스 곡률은 곡면이 얼마나 휘어 있는가를 재는 양<br>
 
*  이 가우스 곡률은 그 곡면의 거리와 각도를 재는 것으로 알수 있다는 정리<br>
 
 
 
 
 
  
 
+
  
 
==가우스 곡률==
 
==가우스 곡률==
 +
* [[가우스 곡률|가우스곡률]]
 +
:<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math>
  
* [[가우스 곡률|가우스곡률]]<br>
+
   
 
 
<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math>
 
 
 
*  <br>
 
 
 
 
 
  
 
==지도제작에의 의미==
 
==지도제작에의 의미==
  
*  구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.<br>
+
*  구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.
**  만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.<br>
+
**  만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.
**  그러나 구면의 가우스 곡률은 언제나 양수이고, 평면의 가우스 곡률은 언제나 0 이다.<br>
+
**  그러나 구면의 가우스 곡률은 언제나 양수이고, 평면의 가우스 곡률은 언제나 0 이다.
이것은 지도제작에 언제나 존재하게 되는 딜레마를 의미함.<br>
+
이것은 지도제작에 언제나 존재하게 되는 딜레마를 의미함.
*  지도를 제작한다면 원하는 성질을 얻는 대신, 무언가는 희생해야 한다는 것을 뜻함.<br>
+
*  지도를 제작한다면 원하는 성질을 얻는 대신, 무언가는 희생해야 한다는 것을 뜻함.
* [[수학과 지도학|지도와 수학]] 항목 참조<br>
+
* [[수학과 지도학|지도와 수학]] 항목 참조
  
 
+
  
 
+
  
 
==역사==
 
==역사==
  
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
+
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
  
* [[가우스-보네 정리]]<br>
+
* [[가우스-보네 정리]]
* [[제3부 지구위의 딱정벌레]]<br>
+
* [[제3부 지구위의 딱정벌레]]
  
 
+
  
 
+
  
 
==사전형태의 자료==
 
==사전형태의 자료==
62번째 줄: 51번째 줄:
 
* http://en.wikipedia.org/wiki/Theorema_Egregium
 
* http://en.wikipedia.org/wiki/Theorema_Egregium
 
[[분류:미분기하학]]
 
[[분류:미분기하학]]
 +
 +
== 노트 ==
 +
 +
===말뭉치===
 +
# A consequence of the Theorema Egregium is that the Earth cannot be displayed on a map without distortion.<ref name="ref_b7a2f3ff">[https://simple.wikipedia.org/wiki/Theorema_egregium Simple English Wikipedia, the free encyclopedia]</ref>
 +
# Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry proved by Carl Friedrich Gauss.<ref name="ref_b7a2f3ff" />
 +
# Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry (proved by Carl Friedrich Gauss in 1827) that concerns the curvature of surfaces.<ref name="ref_5d738f20">[https://en.wikipedia.org/wiki/Theorema_Egregium Theorema Egregium]</ref>
 +
# As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling.<ref name="ref_5d738f20" />
 +
# It follows from Theorema Egregium that under this bending the Gaussian curvature at any two corresponding points of the catenoid and helicoid is always the same.<ref name="ref_5d738f20" />
 +
# An application of the Theorema Egregium is seen when a flat object is somewhat folded or bent along a line, creating rigidity in the perpendicular direction.<ref name="ref_5d738f20" />
 +
# As Lanczos (1970) put it, `In view of his customary reticence, it was an exceptionally jubilant gesture to call one of his theorems “Theorema egregium”.<ref name="ref_dd2d07f1">[https://thatsmaths.com/2018/12/27/gaussian-curvature-the-theorema-egregium/ Gaussian Curvature: the Theorema Egregium]</ref>
 +
# The Gaussian curvature is still 0 and Theorema Egregium still holds and the pizza toppings are still on the floor.<ref name="ref_7b26a47e">[https://medium.com/cantors-paradise/theorema-egregium-and-pizza-eating-7833cb34d592 Theorema Egregium and Pizza Eating]</ref>
 +
# Theorema Egregium means Remarkable Theorem.<ref name="ref_c2521653">[https://www.maths.dur.ac.uk/users/pavel.tumarkin/past/spring17/DG/outline_term2_10.pdf Durham university]</ref>
 +
# Gauss Theorema Egregium allows us to dene the Gauss curvature for any surface S just using the rst fundamental form.<ref name="ref_c2521653" />
 +
# Gauss (effectively) expressed the theorema egregium by saying that the Gaussian curvature at a point is given by where is the Riemann tensor, and and are an orthonormal basis for the tangent space.<ref name="ref_ca4ea3a1">[https://mathworld.wolfram.com/GausssTheoremaEgregium.html Gauss's Theorema Egregium -- from Wolfram MathWorld]</ref>
 +
# Gauss's theorema egregium states that the Gaussian Curvature of a surface embedded in 3-space may be understood intrinsically to that surface.<ref name="ref_08ffd5eb">[https://archive.lib.msu.edu/crcmath/math/math/g/g075.htm Gauss's Theorema Egregium]</ref>
 +
# Gauß (effectively) expressed the theorema egregium by saying that the Gaussian Curvature at a point is given by where is the Riemann Tensor, and and are an orthonormal basis for the Tangent Space.<ref name="ref_08ffd5eb" />
 +
# This leads us to one of the major theorems in differential geometry, Gauss' Theorema Egregium.<ref name="ref_1ae5ded2">[https://www.math.brown.edu/tbanchof/balt/ma106/dtext88.html @include course]</ref>
 +
# At this point we introduce a lemma that will be useful in proving the Theorema Egregium.<ref name="ref_1ae5ded2" />
 +
# Gauss's Theorema Egregium (Latin: "Remarkable Theorem") is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces.<ref name="ref_9d3c2fe4">[https://enacademic.com/dic.nsf/enwiki/160565 Theorema Egregium]</ref>
 +
# It follows from Theorema Egregium that the Gaussian curvature at the two points of the catenoid and helicoid corresponding to each other under this bending is the same.<ref name="ref_9d3c2fe4" />
 +
# Finally, this essay deals with a remarkable theorem in the theory of surfaces, Gauss Theorema Egregium.<ref name="ref_58adece4">[http://www.diva-portal.org/smash/record.jsf?pid=diva2:1104562 Gauss Theorema Egregium]</ref>
 +
# The Theorema Egregium ('Remarkable Theorem') is an important theorem of Carl Friedrich Gauss concerning the curvature of surfaces.<ref name="ref_8f070fe5">[http://50.116.16.126/wiki/index.php/Theorema_Egregium Theorema Egregium]</ref>
 +
# A somewhat whimsical application of the Theorema Egregium is seen in a common pizza-eating strategy: A slice of pizza can be seen as a surface with constant Gaussian curvature 0.<ref name="ref_8f070fe5" />
 +
# We shall deduce the Theorema Egregium from two results which relate the first and second fundamental forms of a surface, and which have other important consequences.<ref name="ref_7d976830">[https://www.semanticscholar.org/paper/Gauss%E2%80%99-Theorema-Egregium-Pressley/d371c196d546250e08bd1895284ec0d6d9e34885 Gauss’ Theorema Egregium]</ref>
 +
# Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces.<ref name="ref_06a6a958">[https://en.glosbe.com/en/sv/Theorema%20Egregium Theorema Egregium in Swedish - English-Swedish Dictionary]</ref>
 +
# Theorema egregium ('det märkvärdiga teoremet') är ett matematiskt teorem av Carl Friedrich Gauss som innebär att Gausskrökningen bevaras vid en isometrisk avbildning.<ref name="ref_06a6a958" />
 +
# For smooth surfaces, Gauss Theorema Egregium says that the Gaussian curvature can be calculated by using distances on S alone; it is independent of the embedding S R3.<ref name="ref_41a8df35">[https://www.mtholyoke.edu/courses/adurfee/ICM-2010/ICM-2010-talk.pdf Polyhedral differential geometry]</ref>
 +
# however, statements of Gauss' Theorema Egregium can be replaced for statements concerning simple and useful connections between their intrinsic and extrinsic measures.<ref name="ref_c18f8b71">[https://pp.bme.hu/ci/article/view/3849 'GAUSS' THEOREMA EGREGIUM FOR TRIANGULATED SURFACES]</ref>
 +
# This is the most wonderful thing I learned this week (though I don’t truly understand it), from the Wikipedia article on Gauss’s Theorema Egregium (Remarkable Theorem) about the curvature of surfaces.<ref name="ref_e6290c1f">[https://www.miskatonic.org/2016/12/09/gauss-and-pizza/ Miskatonic University Press]</ref>
 +
===소스===
 +
<references />
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1048874 Q1048874]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'theorema'}, {'LOWER': 'egregium'}]

2021년 2월 23일 (화) 18:00 기준 최신판

개요

  • 학부 미분기하학에서 배우게 되는 중요한 정리 중의 하나
  • 가우스 곡률은 곡면이 얼마나 휘어 있는가를 재는 양
  • 이 가우스 곡률은 그 곡면의 거리와 각도를 재는 것으로 알수 있다는 정리



가우스 곡률

\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)\]


지도제작에의 의미

  • 구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.
    • 만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.
    • 그러나 구면의 가우스 곡률은 언제나 양수이고, 평면의 가우스 곡률은 언제나 0 이다.
  • 이것은 지도제작에 언제나 존재하게 되는 딜레마를 의미함.
  • 지도를 제작한다면 원하는 성질을 얻는 대신, 무언가는 희생해야 한다는 것을 뜻함.
  • 지도와 수학 항목 참조



역사




관련된 항목들



사전형태의 자료

노트

말뭉치

  1. A consequence of the Theorema Egregium is that the Earth cannot be displayed on a map without distortion.[1]
  2. Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry proved by Carl Friedrich Gauss.[1]
  3. Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry (proved by Carl Friedrich Gauss in 1827) that concerns the curvature of surfaces.[2]
  4. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling.[2]
  5. It follows from Theorema Egregium that under this bending the Gaussian curvature at any two corresponding points of the catenoid and helicoid is always the same.[2]
  6. An application of the Theorema Egregium is seen when a flat object is somewhat folded or bent along a line, creating rigidity in the perpendicular direction.[2]
  7. As Lanczos (1970) put it, `In view of his customary reticence, it was an exceptionally jubilant gesture to call one of his theorems “Theorema egregium”.[3]
  8. The Gaussian curvature is still 0 and Theorema Egregium still holds and the pizza toppings are still on the floor.[4]
  9. Theorema Egregium means Remarkable Theorem.[5]
  10. Gauss Theorema Egregium allows us to dene the Gauss curvature for any surface S just using the rst fundamental form.[5]
  11. Gauss (effectively) expressed the theorema egregium by saying that the Gaussian curvature at a point is given by where is the Riemann tensor, and and are an orthonormal basis for the tangent space.[6]
  12. Gauss's theorema egregium states that the Gaussian Curvature of a surface embedded in 3-space may be understood intrinsically to that surface.[7]
  13. Gauß (effectively) expressed the theorema egregium by saying that the Gaussian Curvature at a point is given by where is the Riemann Tensor, and and are an orthonormal basis for the Tangent Space.[7]
  14. This leads us to one of the major theorems in differential geometry, Gauss' Theorema Egregium.[8]
  15. At this point we introduce a lemma that will be useful in proving the Theorema Egregium.[8]
  16. Gauss's Theorema Egregium (Latin: "Remarkable Theorem") is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces.[9]
  17. It follows from Theorema Egregium that the Gaussian curvature at the two points of the catenoid and helicoid corresponding to each other under this bending is the same.[9]
  18. Finally, this essay deals with a remarkable theorem in the theory of surfaces, Gauss Theorema Egregium.[10]
  19. The Theorema Egregium ('Remarkable Theorem') is an important theorem of Carl Friedrich Gauss concerning the curvature of surfaces.[11]
  20. A somewhat whimsical application of the Theorema Egregium is seen in a common pizza-eating strategy: A slice of pizza can be seen as a surface with constant Gaussian curvature 0.[11]
  21. We shall deduce the Theorema Egregium from two results which relate the first and second fundamental forms of a surface, and which have other important consequences.[12]
  22. Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces.[13]
  23. Theorema egregium ('det märkvärdiga teoremet') är ett matematiskt teorem av Carl Friedrich Gauss som innebär att Gausskrökningen bevaras vid en isometrisk avbildning.[13]
  24. For smooth surfaces, Gauss Theorema Egregium says that the Gaussian curvature can be calculated by using distances on S alone; it is independent of the embedding S R3.[14]
  25. however, statements of Gauss' Theorema Egregium can be replaced for statements concerning simple and useful connections between their intrinsic and extrinsic measures.[15]
  26. This is the most wonderful thing I learned this week (though I don’t truly understand it), from the Wikipedia article on Gauss’s Theorema Egregium (Remarkable Theorem) about the curvature of surfaces.[16]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'theorema'}, {'LOWER': 'egregium'}]