"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 51개는 보이지 않습니다)
1번째 줄: 1번째 줄:
[[#]]
+
==introduction==
  
1995 J. Phys. A: Math. Gen. 28 2217
+
* {{수학노트|url=양자_다이로그_함수(quantum_dilogarithm)}}
 +
* {{수학노트|url=양자_다이로그_항등식_(quantum_dilogarithm_identities)}}
 +
* http://arxiv.org/abs/hep-th/9611117
  
 
 
  
L.D.<em>Fadeev</em> and R.M.<em>Kashaev</em>, <em>Quantum Dilogarithm</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434
+
==Knot and invariants from quantum dilogarithm==
  
[[5375705/attachments/3075855|qdilog.pdf]]
+
* '''[Kashaev1995] '''
 +
*  a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
 +
*  The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
 +
*  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
 +
*  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
  
 
+
* '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]
 +
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
  
 
 
  
http://ncatlab.org/nlab/show/quantum+dilogarithm
+
==Teschner's version==
 +
* <math>b\in \R_{>0}</math>
 +
* <math>G_b(z)</math>
 +
* <math>G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})</math>, where <math>Q=b+b^{-1}</math>
 +
 
 +
 
 +
==related items==
 +
* [[Manufacturing matrices from lower ranks]]
 +
* [[Fermionic summation formula]]
 +
* [[asymptotic analysis of basic hypergeometric series]]
 +
* [[Kashaev's volume conjecture]]
 +
 
 +
 
 +
==computational resource==
 +
* https://drive.google.com/file/d/0B8XXo8Tve1cxQ09YeHM2ellGS1U/view
 +
* http://math-www.uni-paderborn.de/~axel/graphs/
 +
 
 +
 
 +
[[분류:개인노트]]
 +
[[분류:Number theory and physics]]
 +
[[분류:dilogarithm]]
 +
[[분류:migrate]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7269036 Q7269036]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]

2021년 2월 17일 (수) 02:08 기준 최신판

introduction


Knot and invariants from quantum dilogarithm

  • [Kashaev1995]
  • a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
  • The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
  • this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
  • It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.


Teschner's version

  • \(b\in \R_{>0}\)
  • \(G_b(z)\)
  • \(G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})\), where \(Q=b+b^{-1}\)


related items


computational resource

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]