"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 50개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
 
+
* {{수학노트|url=양자_다이로그_함수(quantum_dilogarithm)}}
 +
* {{수학노트|url=양자_다이로그_항등식_(quantum_dilogarithm_identities)}}
 +
* http://arxiv.org/abs/hep-th/9611117
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5>
+
==Knot and invariants from quantum dilogarithm==
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
* '''[Kashaev1995] '''
 +
*  a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
 +
*  The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
 +
*  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
 +
*  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
  
 
+
* '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]
 +
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
+
==Teschner's version==
 +
* <math>b\in \R_{>0}</math>
 +
* <math>G_b(z)</math>
 +
* <math>G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})</math>, where <math>Q=b+b^{-1}</math>
  
 
 
  
 
+
==related items==
 +
* [[Manufacturing matrices from lower ranks]]
 +
* [[Fermionic summation formula]]
 +
* [[asymptotic analysis of basic hypergeometric series]]
 +
* [[Kashaev's volume conjecture]]
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
+
==computational resource==
 +
* https://drive.google.com/file/d/0B8XXo8Tve1cxQ09YeHM2ellGS1U/view
 +
* http://math-www.uni-paderborn.de/~axel/graphs/
  
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
[[분류:개인노트]]
 +
[[분류:Number theory and physics]]
 +
[[분류:dilogarithm]]
 +
[[분류:migrate]]
  
 
+
==메타데이터==
 
+
===위키데이터===
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
+
* ID : [https://www.wikidata.org/wiki/Q7269036 Q7269036]
 
+
===Spacy 패턴 목록===
 
+
* [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
[[4909919|]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
 
 
* [http://dx.doi.org/10.1088/0305-4470/28/8/014 Remarks on the quantum dilogarithm]<br>
 
** V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217
 
* <em style="line-height: 2em;">Quantum Dilogarithm</em><br>
 
** L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434[[5375705/attachments/3075855|]]
 
** [[5375705/attachments/3075855|qdilog.pdf]]
 
* http://ncatlab.org/nlab/show/quantum+dilogarithm
 
 
 
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html[http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5>
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">experts on the field</h5>
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links</h5>
 
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 

2021년 2월 17일 (수) 02:08 기준 최신판

introduction


Knot and invariants from quantum dilogarithm

  • [Kashaev1995]
  • a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
  • The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
  • this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
  • It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.


Teschner's version

  • \(b\in \R_{>0}\)
  • \(G_b(z)\)
  • \(G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})\), where \(Q=b+b^{-1}\)


related items


computational resource

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]