"숫자 67"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
* 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math>의  [[수체의 class number|class number]] 는 1이다
+
* 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math>의  [[수체의 class number|class number]] 는 1이다
 
* <math>\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]</math> 는 UFD 이다
 
* <math>\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]</math> 는 UFD 이다
 
* 소수이며, 비정규소수이다
 
* 소수이며, 비정규소수이다
  
 
+
  
 
+
  
 
==class number 1==
 
==class number 1==
  
*  복소 이차 수체 <math>\mathbb{Q}(\sqrt{-d})</math> 가 [[수체의 class number|class number]] 1인 경우는 다음 9가지가 있다
+
*  복소 이차 수체 <math>\mathbb{Q}(\sqrt{-d})</math> [[수체의 class number|class number]] 1인 경우는 다음 9가지가 있다
 
** <math>d=1,2,3,7,11,19,43,67,163</math>
 
** <math>d=1,2,3,7,11,19,43,67,163</math>
 
* 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
 
* 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
 
* [[가우스의 class number one 문제]] 항목 참조
 
* [[가우스의 class number one 문제]] 항목 참조
  
 
+
  
 
+
  
 
==오일러의 소수생성다항식==
 
==오일러의 소수생성다항식==
29번째 줄: 29번째 줄:
 
* [[오일러의 소수생성다항식 x²+x+41|오일러의 소수생성다항식 x² +x+41]] 항목 참조
 
* [[오일러의 소수생성다항식 x²+x+41|오일러의 소수생성다항식 x² +x+41]] 항목 참조
  
 
+
  
 
+
  
 
==라마누잔 수==
 
==라마누잔 수==
40번째 줄: 40번째 줄:
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]] 항목 참조
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]] 항목 참조
  
 
+
  
 
+
  
 
+
  
 
==비정규소수==
 
==비정규소수==
54번째 줄: 54번째 줄:
 
* 정의에 대해서는 [[정규소수 (regular prime)]] 항목 참조
 
* 정의에 대해서는 [[정규소수 (regular prime)]] 항목 참조
  
 
+
  
 
+
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
*  
 
 
 
 
 
 
 
 
 
  
 
==메모==
 
==메모==
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
81번째 줄: 69번째 줄:
 
* [[숫자 163]]
 
* [[숫자 163]]
  
 
+
  
 
+
  
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/67%28%EC%88%AB%EC%9E%90%29 http://ko.wikipedia.org/wiki/67(숫자)]
 
* [http://ko.wikipedia.org/wiki/67%28%EC%88%AB%EC%9E%90%29 http://ko.wikipedia.org/wiki/67(숫자)]
94번째 줄: 82번째 줄:
 
* http://en.wikipedia.org/wiki/Heegner_number
 
* http://en.wikipedia.org/wiki/Heegner_number
  
 
+
  
 
+
  
 
+
  
 
==관련기사==
 
==관련기사==
105번째 줄: 93번째 줄:
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=67
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=67
 
[[분류:에세이]]
 
[[분류:에세이]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q713157 Q713157]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': '67'}]
 +
* [{'LOWER': 'sixty'}, {'LEMMA': 'seven'}]
 +
* [{'LOWER': 'sixty'}, {'OP': '*'}, {'LEMMA': 'seven'}]

2021년 2월 17일 (수) 04:50 기준 최신판

개요

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-67})\)의 class number 는 1이다
  • \(\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]\) 는 UFD 이다
  • 소수이며, 비정규소수이다



class number 1

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-d})\) 가 class number 1인 경우는 다음 9가지가 있다
    • \(d=1,2,3,7,11,19,43,67,163\)
  • 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
  • 가우스의 class number one 문제 항목 참조



오일러의 소수생성다항식



라마누잔 수




비정규소수

  • 67은 세번째로 작은 비정규소수
  • 베르누이 수\[B_{58}=\frac{84483613348880041862046775994036021}{354}\]
  • 67은 \(B_{58}\)의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다



메모

관련된 항목들





사전 형태의 자료




관련기사

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': '67'}]
  • [{'LOWER': 'sixty'}, {'LEMMA': 'seven'}]
  • [{'LOWER': 'sixty'}, {'OP': '*'}, {'LEMMA': 'seven'}]