"Kashaev's volume conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 61개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
 
+
* The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca
 +
* <math>SU(2)</math> connections on <math>S^3-K</math> should be sensitive to the flat <math>SL_2(C)</math> connection defining its hyperbolic structure
 +
* hyperbolic volume is closely related to the Cherm-Simons invariant
 +
* volume conjecture has its complexified version
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5>
+
==Kashaev invariant==
 +
* invariant of a link using the R-matrix
 +
* calculate the limit of the Kashaev invariant
 +
* related with the colored Jones polynomial
 +
===optimistic limit===
 +
* volume conjecture
 +
* idea of the optimistic limit
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
  
 
+
==examples==
 +
* <math>4_1</math> figure eight knot
 +
* <math>5_2</math>
 +
* <math>6_1</math>
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
+
==known examples==
 +
* figure eight knot
 +
* Borromean ring
 +
* torus knots
 +
* whitehead chains
 +
* all links of zero volume
 +
* twist knows is (almost) done
  
 
 
  
 
+
==history==
 +
* 1995 Kashaev constructed knot invariants <math>\langle K \rangle_N</math>
 +
* 1997 Kashaev proposed that the asymptotic behaviour of the 1995 invariant involves the volume of the hyperbolic 3-manifold
 +
* 2001 '''[MM01]''' Murakami-Murakami found that <math>\langle K \rangle_N</math> can be obtained from evaluating the colored Jones polynomial at the <math>N</math>-th root of unity
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
+
==related items==
 +
* [[A-polynomial]]
 +
* [[quantum dilogarithm]]
 +
* [[Chern-Simons invariant]]
 +
* [[complex Chern-Simons theory]]
 +
* [[quantum modular forms]]
 +
* [[Volume of hyperbolic threefolds and L-values]]
 +
* [[Holography and volume conjecture]]
  
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxRmVVeXlVWU9xbVk/edit
  
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
+
==encyclopedia==
  
 
+
* http://ko.wikipedia.org/wiki/
 
+
* http://en.wikipedia.org/wiki/Volume_conjecture
* [[2010년 books and articles]]<br>
+
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
[[4909919|]]
 
 
 
 
 
  
 
+
==expositions==
 +
* Hikami, Kazuhiro. 2003. “Volume Conjecture and Asymptotic Expansion of <math>q</math>-Series.” Experimental Mathematics 12 (3): 319–337. http://projecteuclid.org/euclid.em/1087329235
 +
* [http://www.youtube.com/watch?v=KszBLLJKccQ Introduction to the Volume Conjecture, Part I], by Hitoshi Murakami
 +
** video
 +
* R. M. Kashaev , [http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5941 Faddeev's quantum dilogarithm and 3-manifold invariants], Nov 2012
 +
** video lecture
 +
* Zagier [https://docs.google.com/file/d/0B8XXo8Tve1cxbGQwMUVpQlhlREk/edit Between Number theory and topology.pdf]
 +
* http://www.math.titech.ac.jp/~Jerome/090210%20workshop.pdf
 +
* [http://www.math.columbia.edu/%7Edpt/speaking/hypvol.ps Hyperbolic volume and the Jones polynomial] ([http://www.math.columbia.edu/%7Edpt/speaking/hypvol.pdf PDF]), notes from a lecture at MSRI, December 2000. [http://www.math.columbia.edu/%7Edpt/speaking/Grenoble.pdf Earlier notes] (covering more material) from a lecture series at the Grenoble summer school “Invariants des noeuds et de variétés de dimension 3”, June 1999.
 +
*  Murakami, Hitoshi. 2010. An Introduction to the Volume Conjecture. 1002.0126 (January 31). http://arxiv.org/abs/1002.0126.
 +
* H. Murakami, 2008, An introduction to the volume conjecture and its generalizations
 +
* H. Murakami, A quantum introduction to knot theory
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
  
* [http://projecteuclid.org/euclid.em/1057777432 Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links]<br>
+
==articles==
 +
* Alexander Kolpakov, Jun Murakami, Combinatorial decompositions, Kirillov-Reshetikhin invariants and the Volume Conjecture for hyperbolic polyhedra, http://arxiv.org/abs/1603.02380v1
 +
* Chen, Qingtao, Kefeng Liu, and Shengmao Zhu. “Volume Conjecture for <math>SU(n)</math>-Invariants.” arXiv:1511.00658 [hep-Th, Physics:math-Ph], November 2, 2015. http://arxiv.org/abs/1511.00658.
 +
* Fernandez-Lopez, Manuel, and Eduardo Garcia-Rio. “On Gradient Ricci Solitons with Constant Scalar Curvature.” arXiv:1409.3359 [math], September 11, 2014. http://arxiv.org/abs/1409.3359.
 +
* Murakami, Jun. 2014. “From Colored Jones Invariants to Logarithmic Invariants.” arXiv:1406.1287 [math], June. http://arxiv.org/abs/1406.1287.
 +
* Gang, Dongmin, Nakwoo Kim, and Sangmin Lee. “Holography of Wrapped M5-Branes and Chern-Simons Theory.” arXiv:1401.3595 [hep-Th], January 15, 2014. http://arxiv.org/abs/1401.3595.
 +
* Dimofte, Tudor Dan. 2010. “Refined BPS Invariants, Chern-Simons Theory, and the Quantum Dilogarithm”. Phd, California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:05142010-131147918.
 +
* Generalized volume conjecture and the A-polynomials: The Neumann–Zagier potential function as a classical limit of the partition function , 2007 http://dx.doi.org/10.1016/j.geomphys.2007.03.008
 +
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]
 +
** R. M. Kashaev and O. Tirkkonen, 2003
 +
* [http://projecteuclid.org/euclid.em/1057777432 Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links]
 
** Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, and Yoshiyuki Yokota, 2002
 
** Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, and Yoshiyuki Yokota, 2002
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
+
* [http://arxiv.org/abs/math-ph/0105039 Hyperbolic Structure Arising from a Knot Invariant], 2001
** R. M. Kashaev, 1996
+
* '''[MM01]''' Murakami, Hitoshi, and Jun Murakami. 2001. “The Colored Jones Polynomials and the Simplicial Volume of a Knot.” Acta Mathematica 186 (1): 85–104. doi:10.1007/BF02392716.
 
+
* Yoshiyuki Yokota [http://arxiv.org/abs/math/0009165 On the volume conjecture for hyperbolic knots], 2000
* [[2010년 books and articles|논문정리]]
+
* Kashaev, R. M. 1997. “The Hyperbolic Volume of Knots from the Quantum Dilogarithm.” Letters in Mathematical Physics. A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics 39 (3): 269–275. doi:10.1023/A:1007364912784.
* http://www.ams.org/mathscinet
+
* Kashaev, R. M. 1995. “A Link Invariant from Quantum Dilogarithm.” Modern Physics Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear Physics 10 (19): 1409–1418. doi:10.1142/S0217732395001526.
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html[http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5>
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">experts on the field</h5>
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links</h5>
+
==links==
 +
* [http://staff.science.uva.nl/%7Eriveen/volume_conjecture.htm Volume conjecture links and notes]
 +
* [http://www.rolandvdv.nl/research.html R. van der Veen]
 +
[[분류:math and physics]]
 +
[[분류:TQFT]]
 +
[[분류:Knot theory]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q7940887 Q7940887]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
*
+
* [{'LOWER': 'volume'}, {'LEMMA': 'conjecture'}]

2021년 2월 17일 (수) 02:04 기준 최신판

introduction

  • The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca
  • \(SU(2)\) connections on \(S^3-K\) should be sensitive to the flat \(SL_2(C)\) connection defining its hyperbolic structure
  • hyperbolic volume is closely related to the Cherm-Simons invariant
  • volume conjecture has its complexified version


Kashaev invariant

  • invariant of a link using the R-matrix
  • calculate the limit of the Kashaev invariant
  • related with the colored Jones polynomial

optimistic limit

  • volume conjecture
  • idea of the optimistic limit


examples

  • \(4_1\) figure eight knot
  • \(5_2\)
  • \(6_1\)


known examples

  • figure eight knot
  • Borromean ring
  • torus knots
  • whitehead chains
  • all links of zero volume
  • twist knows is (almost) done


history

  • 1995 Kashaev constructed knot invariants \(\langle K \rangle_N\)
  • 1997 Kashaev proposed that the asymptotic behaviour of the 1995 invariant involves the volume of the hyperbolic 3-manifold
  • 2001 [MM01] Murakami-Murakami found that \(\langle K \rangle_N\) can be obtained from evaluating the colored Jones polynomial at the \(N\)-th root of unity

related items


computational resource


encyclopedia


expositions


articles

links

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'volume'}, {'LEMMA': 'conjecture'}]