"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 6개는 보이지 않습니다)
8번째 줄: 8번째 줄:
 
*  BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
 
*  BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
 
*  re-packaging of Faddeev-Popov quantization
 
*  re-packaging of Faddeev-Popov quantization
*  the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge
+
*  the conditions <math>D = 26</math> and <math>\alpha_0=1</math> for the space-time dimension <math>D</math> and the zero-intercept <math>\alpha_0</math> of leading trajectory are required by the nilpotency <math>Q_B^2 = 0</math> of the BRS charge
 
 
 
 
 
 
  
 
==gauge fixing==
 
==gauge fixing==
90번째 줄: 86번째 줄:
 
* <math>\mathfrak{g}</math> : <math>\mathbb{Z}</math>-graded Lie algebra
 
* <math>\mathfrak{g}</math> : <math>\mathbb{Z}</math>-graded Lie algebra
 
* <math>\sigma</math> : anti-linear automorphism sending <math>\mathfrak{g}_{n}</math> to <math>\mathfrak{g}_{-n}</math>
 
* <math>\sigma</math> : anti-linear automorphism sending <math>\mathfrak{g}_{n}</math> to <math>\mathfrak{g}_{-n}</math>
* <math>H^2(\mathfrak{g})=0</math> (i.e. no non-trivial central extension)
+
* <math>H^2(\mathfrak{g})=0</math> (i.e. no non-trivial central extension)
 
 
 
 
 
 
  
 
==applications==
 
==applications==
120번째 줄: 112번째 줄:
 
==books==
 
==books==
  
* Polchinski, vol. I. $3.1-3.4, 4.2-4.3
+
* Polchinski, vol. I. <math>3.1-3.4, 4.2-4.3
 
* GSW, I. 3.1-3.2
 
* GSW, I. 3.1-3.2
  
170번째 줄: 162번째 줄:
 
   
 
   
 
[[분류:physics]]
 
[[분류:physics]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:string theory]]
 
[[분류:string theory]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2752849 Q2752849]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'brst'}, {'LEMMA': 'quantization'}]
 +
* [{'LOWER': 'becchi'}, {'OP': '*'}, {'LOWER': 'rouet'}, {'OP': '*'}, {'LOWER': 'stora'}, {'OP': '*'}, {'LOWER': 'tyutin'}, {'LEMMA': 'quantization'}]
 +
* [{'LOWER': 'brst'}, {'LEMMA': 'quantisation'}]
 +
* [{'LOWER': 'becchi'}, {'OP': '*'}, {'LOWER': 'rouet'}, {'OP': '*'}, {'LOWER': 'stora'}, {'OP': '*'}, {'LOWER': 'tyutin'}, {'LEMMA': 'quantisation'}]

2021년 2월 17일 (수) 02:01 기준 최신판

introduction

  • gauge theory = principal G-bundle
  • we require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
    • gauge theory allows 'local symmetry' which should be ignored to be physical
    • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • re-packaging of Faddeev-Popov quantization
  • the conditions \(D = 26\) and \(\alpha_0=1\) for the space-time dimension \(D\) and the zero-intercept \(\alpha_0\) of leading trajectory are required by the nilpotency \(Q_B^2 = 0\) of the BRS charge

gauge fixing

ghost variables




Faddeev-Ghost determinant




path integral and ghost sector

  • \(Z = \int\!\mathcal{D}X\,\mathcal{D}c \mathcal{D}b \mathcal{D}\bar{c} \mathcal{D}\bar{b} \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}\)
  • \(e^{S_1(X)+S_2(b,c,\bar{b},\bar{c},\cdots,X)}\)
  • DX : matter and Db : ghost Dc : antighost
  • bc system of \epsilon=+1 (in Faddeev–Popov ghost fields)
  • \lambda=2
  • c_{b,c}=-26
  • [c]=-1,[b]=2
  • global issues
    • discrepancies in conformal gauge
    • moduli spaces
    • CKV
  • path integral and moduli space of Riemann surfaces



nilpotency of BRST operator



construction of Hilbert space of states

  • BRST charge acts on a huge space
  • Q.v =0 <=> physical condition
  • if the total central charge is not 0 but c, Q_{BRST}^2=c




BRST cohomology

  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)

applications




related items



books

  • Polchinski, vol. I. <math>3.1-3.4, 4.2-4.3
  • GSW, I. 3.1-3.2



encyclopedia



expositions



articles


blogs

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'brst'}, {'LEMMA': 'quantization'}]
  • [{'LOWER': 'becchi'}, {'OP': '*'}, {'LOWER': 'rouet'}, {'OP': '*'}, {'LOWER': 'stora'}, {'OP': '*'}, {'LOWER': 'tyutin'}, {'LEMMA': 'quantization'}]
  • [{'LOWER': 'brst'}, {'LEMMA': 'quantisation'}]
  • [{'LOWER': 'becchi'}, {'OP': '*'}, {'LOWER': 'rouet'}, {'OP': '*'}, {'LOWER': 'stora'}, {'OP': '*'}, {'LOWER': 'tyutin'}, {'LEMMA': 'quantisation'}]