"Modular invariance in math and physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 10개는 보이지 않습니다)
6번째 줄: 6번째 줄:
 
* Modular invariance in lattice statistical mechanics http://aflb.ensmp.fr/AFLB-26j/aflb26jp287.pdf
 
* Modular invariance in lattice statistical mechanics http://aflb.ensmp.fr/AFLB-26j/aflb26jp287.pdf
  
 
+
  
 
+
  
 
==path integral in string theory==
 
==path integral in string theory==
  
* [[path integral and moduli space of Riemann surfaces]] :<math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdots</math><br>
+
* [[path integral and moduli space of Riemann surfaces]] :<math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdots</math>
 
* <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain.
 
* <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain.
*  string theory (symmetries, modular group) has a natural covariant UV cutoff!<br>
+
*  string theory (symmetries, modular group) has a natural covariant UV cutoff!
 
** compare with http://www.physics.thetangentbundle.net/wiki/Quantum_field_theory/Schwinger_proper_time_formalism
 
** compare with http://www.physics.thetangentbundle.net/wiki/Quantum_field_theory/Schwinger_proper_time_formalism
  
 
+
  
 
+
  
 
+
  
 
==circle method==
 
==circle method==
  
 
+
  
 
+
  
 
+
  
 
==related items==
 
==related items==
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
+
* [[modular invariant partition functions]]
 +
* [[Kac-Peterson modular S-matrix]]
 +
* [[Mock theta and physics]]
 
* [[Blackhole theory]]
 
* [[Blackhole theory]]
* [[Kac-Peterson modular S-matrix]]
 
 
* [[Hardy-Ramanujan tauberian theorem]]
 
* [[Hardy-Ramanujan tauberian theorem]]
 +
 +
 +
==questions==
 +
* http://mathoverflow.net/questions/115225/the-dedekind-eta-function-in-physics
 +
 +
 +
==expositions==
 +
* Nikolov, Nikolay M., and Ivan T. Todorov. 2004. “Lectures on Elliptic Functions and Modular Forms in Conformal Field Theory”. ArXiv e-print math-ph/0412039. http://arxiv.org/abs/math-ph/0412039.
 +
* Goddard, Peter. ‘Modular Invariance and Infinite-Dimensional Algebras’. In Superstrings, edited by Peter G. O. Freund and K. T. Mahanthappa, 3–16. NATO ASI Series 175. Springer US, 1988. http://link.springer.com/chapter/10.1007/978-1-4613-1015-0_1.
 +
* Lepowsky, J. “Affine Lie Algebras and Combinatorial Identities.” In Lie Algebras and Related Topics, edited by David Winter, 130–56. Lecture Notes in Mathematics 933. Springer Berlin Heidelberg, 1982. http://link.springer.com/chapter/10.1007/BFb0093358.
 +
* Lepowsky, J. "Lie algebras and combinatorics." Proc. Internat. Congr. Math.(Helsinki, 1978)(to appear) (1978). http://www.mathunion.org/ICM/ICM1978.2/Main/icm1978.2.0579.0584.ocr.pdf
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[Category:research topics]]
 
 
[[분류:Number theory and physics]]
 
[[분류:Number theory and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q60367 Q60367]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'modular'}, {'LEMMA': 'invariance'}]

2021년 2월 17일 (수) 01:41 기준 최신판

introduction



path integral in string theory




circle method

related items


questions


expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'modular'}, {'LEMMA': 'invariance'}]