"Brownian motion"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  scaling limit of a random walk on a two dimensional grid<br>
+
*  scaling limit of a random walk on a two dimensional grid
 
** the limit of random walk as the time and space increments go to zero.
 
** the limit of random walk as the time and space increments go to zero.
 
* Mandelbrot conjecture
 
* Mandelbrot conjecture
  
 
+
  
 
+
  
 
==heat equation and Brownian motion==
 
==heat equation and Brownian motion==
14번째 줄: 14번째 줄:
 
* [http://stat.math.uregina.ca/%7Ekozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf http://stat.math.uregina.ca/~kozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf]
 
* [http://stat.math.uregina.ca/%7Ekozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf http://stat.math.uregina.ca/~kozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf]
  
 
+
  
 
+
  
 
==Wiener process==
 
==Wiener process==
23번째 줄: 23번째 줄:
 
* example of a Levy process
 
* example of a Levy process
  
 
+
  
 
+
  
 
+
  
 
==Mandelbrot conjecture==
 
==Mandelbrot conjecture==
41번째 줄: 41번째 줄:
 
* [[Ito calculus]]
 
* [[Ito calculus]]
  
 
+
  
  
50번째 줄: 50번째 줄:
 
* http://en.wikipedia.org/wiki/Wiener_process
 
* http://en.wikipedia.org/wiki/Wiener_process
  
 
+
  
 
+
  
 
==books==
 
==books==
58번째 줄: 58번째 줄:
 
* Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.
 
* Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.
  
 
+
  
 
==expositions and lecture notes==
 
==expositions and lecture notes==
  
 
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
 
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
* [http://www.nber.org/%7Enroussan/thesis/thesis.pdf The Mandelbrot’s Conjecture and Critical Exponents for Brownian Motion]<br>
+
* [http://www.nber.org/%7Enroussan/thesis/thesis.pdf The Mandelbrot’s Conjecture and Critical Exponents for Brownian Motion]
 
** Nikolai Roussanov, 2001
 
** Nikolai Roussanov, 2001
 
* [http://www.thehcmr.org/issue2_2/stats_corner.pdf Conformal Invariance in the Scaling Limit of Critical Planar Percolation]
 
* [http://www.thehcmr.org/issue2_2/stats_corner.pdf Conformal Invariance in the Scaling Limit of Critical Planar Percolation]
69번째 줄: 69번째 줄:
 
* http://www.maths.ox.ac.uk/taxonomy/term/1098
 
* http://www.maths.ox.ac.uk/taxonomy/term/1098
  
 
+
  
 
+
  
 
==articles==
 
==articles==
 +
* Bodineau, Thierry, Isabelle Gallagher, and Laure Saint-Raymond. “The Brownian Motion as the Limit of a Deterministic System of Hard-Spheres.” arXiv:1305.3397 [math-Ph], May 15, 2013. http://arxiv.org/abs/1305.3397.
 
* Camia, Federico, Alberto Gandolfi, and Matthew Kleban. “Conformal Correlation Functions in the Brownian Loop Soup.” arXiv:1501.05945 [cond-Mat, Physics:hep-Th, Physics:math-Ph], January 23, 2015. http://arxiv.org/abs/1501.05945.
 
* Camia, Federico, Alberto Gandolfi, and Matthew Kleban. “Conformal Correlation Functions in the Brownian Loop Soup.” arXiv:1501.05945 [cond-Mat, Physics:hep-Th, Physics:math-Ph], January 23, 2015. http://arxiv.org/abs/1501.05945.
 
* [http://arxiv.org/abs/math/0506337 On the scaling limit of simple random walk excursion measure in the plane] Michael J. Kozdron, 2005
 
* [http://arxiv.org/abs/math/0506337 On the scaling limit of simple random walk excursion measure in the plane] Michael J. Kozdron, 2005
85번째 줄: 86번째 줄:
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q178036 Q178036]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'brownian'}, {'LEMMA': 'motion'}]

2021년 2월 17일 (수) 01:32 기준 최신판

introduction

  • scaling limit of a random walk on a two dimensional grid
    • the limit of random walk as the time and space increments go to zero.
  • Mandelbrot conjecture



heat equation and Brownian motion



Wiener process

  • synonym with Brown motion
  • example of a Levy process




Mandelbrot conjecture

  • the Hausdorff dimension of the outer boundary of a planar Brownian motion equals 4=3
  • fractal dimension of the frontier of a two dimensional Browninan path is 4/3
  • Schramm–Loewner evolution (SLE)


related items



encyclopedia



books

  • Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.


expositions and lecture notes



articles

question and answers(Math Overflow)

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'brownian'}, {'LEMMA': 'motion'}]