"Klein-Gordon equation"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | * | + | * [[클라인-고든_방정식]] |
− | + | ||
− | + | ||
==introduction== | ==introduction== | ||
10번째 줄: | 10번째 줄: | ||
* there are real KG equation and complex KG equation | * there are real KG equation and complex KG equation | ||
** real case describes electrically neutral particles | ** real case describes electrically neutral particles | ||
− | ** | + | ** complex case describes charged particles |
* <math>(\Box + m^2) \psi = 0</math> i.e. <math>(\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0</math> | * <math>(\Box + m^2) \psi = 0</math> i.e. <math>(\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0</math> | ||
− | * correct interpretations | + | * correct interpretations of <math>\phi</math> requires the idea of quantum field rather than the particle wavefunction |
** negative probability density -> charge density | ** negative probability density -> charge density | ||
− | * Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation | + | * Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles |
− | ** for example, | + | ** for example, <math>\pi</math>-meson |
− | * Thus | + | * Thus the Dirac equation comes in to deal with spin-<math>1/2</math> particles. |
− | + | ||
− | + | ||
==Lorentz invariant commutation relation== | ==Lorentz invariant commutation relation== | ||
− | + | ||
− | + | ||
− | + | ||
==related items== | ==related items== | ||
35번째 줄: | 35번째 줄: | ||
* [[sine-Gordon equation]] | * [[sine-Gordon equation]] | ||
[[분류:physics]] | [[분류:physics]] | ||
− | |||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:QFT]] | [[분류:QFT]] | ||
[[분류:migrate]] | [[분류:migrate]] |
2020년 12월 28일 (월) 04:16 기준 최신판
introduction
- in condensed matter physics it describes long wavelength optical phonons
- there are real KG equation and complex KG equation
- real case describes electrically neutral particles
- complex case describes charged particles
- \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
- correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
- negative probability density -> charge density
- Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
- for example, \(\pi\)-meson
- Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.