"로저스 다이로그 함수 (Rogers dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(section '관련논문' updated)
 
(사용자 2명의 중간 판 48개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
* [[다이로그 함수(dilogarithm)]] 의 변종
 +
*  다양한 [[함수 다이로그 항등식(functional dilogarithm identity)]]  을 만족시킴
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
==정의==
  
 
+
* <math>x\in (0,1)</math>에서 로저스 다이로그 함수를 다음과 같이 정의
 +
:<math>L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\left(\frac{\log(1-y)}{y}+\frac{\log(y)}{1-y}\right)dy</math>
 +
* <math>(-\infty,0],[1,+\infty)</math>를 제외한 복소평면으로 해석적확장됨
 +
* <math>dL(y)=\frac{1}{2}[\log(y)d\log (1-y)-\log(1-y)d\log (y)]</math>
  
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
+
==함수의 그래프==
  
* 로저스 dilogarithm을 다음과 같이 정의<br><math>L(x)=\operatorname{Li}_2(z)+\frac{1}{2}\log x\log (1-x)</math> , <math>x\in (0,1)</math><br><math>\mbox{L}(1)=\frac{\pi^2}{6}</math><br>
+
* <math>x\in (0,1)</math> 에서의 그래프
 +
[[파일:로저스 다이로그 함수 (Roger s dilogarithm)1.gif]]
  
 
+
*  함수 방정식을 이용한 확장
 +
[[파일:로저스 다이로그 함수 (Roger s dilogarithm)2.gif]]
  
 
+
==반사공식(오일러)==
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">반사공식(오일러)</h5>
+
* <math>0\leq x \leq 1</math> 일 때:<math>L(x)+L(1-x)=L(1)</math>
  
<math>L(x)+L(1-x)=L(1)</math>
+
  
 
+
  
 
+
==5항 관계식==
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">5항 관계식</h5>
+
* <math>0\leq x,y\leq 1</math> 일 때, :<math>L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy}\right)=\frac{\pi^2}{2}</math>
  
<math>L(x)+L(y)=L(xy)+L(\frac{x(1-y)}{1-xy})+L\Left( \frac{y(1-x)}{1-xy} )\right)</math>
 
  
 
 
  
 
+
==special values==
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
<math>L(0)=0</math>
  
 
+
<math>L(1)=\frac{\pi^2}{6}</math>
  
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
<math>L(-1)=-\frac{\pi^2}{12}</math>
  
 
+
<math>L(\frac{1}{2})=\frac{\pi^2}{12}</math>
  
 
+
<math>L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}</math>
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
<math>L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}</math>
  
* [[수학사연표 (역사)|수학사연표]]
+
* non-unitary <math>c(2,k+2)</math> minimal models
 +
:<math>\sum_{i=1}^{[k/2]}L\left(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}}\right)=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}</math>
  
 
 
  
 
+
==역사==
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
* [[수학사 연표]]
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
==메모==
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
==관련된 항목들==
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* [[로저스-라마누잔 항등식|로저스-라마누잔 연분수와 항등식]]
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
==매스매티카 파일 및 계산 리소스==
  
* http://ko.wikipedia.org/wiki/
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZGMwYzhkZjItMmY5Ny00NDI4LTgxYjktN2E2NDlkNmNjMjAz&sort=name&layout=list&num=50
* http://en.wikipedia.org/wiki/
 
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 +
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [[매스매티카 파일 목록]]
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
  
*  Identities for the Rogers dilogarithm function connected with simple Lie algebras<br>
+
==사전 형태의 자료==
** A. N. Kirillov
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/10.1007/BF01840426
 
  
 
+
* http://ko.wikipedia.org/wiki/
 
+
* http://en.wikipedia.org/wiki/
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
==관련논문==
 +
* Tomoki Nakanishi, Rogers dilogarithms of higher degree and generalized cluster algebras, arXiv:1605.04777 [math.QA], May 16 2016, http://arxiv.org/abs/1605.04777
 +
* Hartnick, Tobias, and Andreas Ott. “Perturbations of the Spence-Abel Equation and Deformations of the Dilogarithm Function.” arXiv:1601.07109 [math], January 26, 2016. http://arxiv.org/abs/1601.07109.
 +
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities]
 +
** Basil Gordon  and Richard J. Mcintosh, 1997
 +
* [http://dx.doi.org/10.1143/PTPS.118.61 Dilogarithm identities]
 +
** Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995
 +
* [http://dx.doi.org/10.1007/BF01840426 Identities for the Rogers dilogarithm function connected with simple Lie algebras]
 +
** A. N. Kirillov, 1989
  
구글 블로그 검색<br>
+
==관련도서==
** http://blogsearch.google.com/blogsearch?q=
+
Harold Scott Macdonald Coxeter [http://books.google.com/books?id=beTjmcibCH8C The beauty of geometry: twelve essays]
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
** chapter 1
* [http://math.dongascience.com/ 수학동아]
+
[[분류:다이로그]]
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
[[분류:특수함수]]
* [http://betterexplained.com/ BetterExplained]
 

2016년 5월 18일 (수) 00:14 기준 최신판

개요


정의

  • \(x\in (0,1)\)에서 로저스 다이로그 함수를 다음과 같이 정의

\[L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\left(\frac{\log(1-y)}{y}+\frac{\log(y)}{1-y}\right)dy\]

  • \((-\infty,0],[1,+\infty)\)를 제외한 복소평면으로 해석적확장됨
  • \(dL(y)=\frac{1}{2}[\log(y)d\log (1-y)-\log(1-y)d\log (y)]\)


함수의 그래프

  • \(x\in (0,1)\) 에서의 그래프

로저스 다이로그 함수 (Roger s dilogarithm)1.gif

  • 함수 방정식을 이용한 확장

로저스 다이로그 함수 (Roger s dilogarithm)2.gif

반사공식(오일러)

  • \(0\leq x \leq 1\) 일 때\[L(x)+L(1-x)=L(1)\]



5항 관계식

  • \(0\leq x,y\leq 1\) 일 때, \[L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy}\right)=\frac{\pi^2}{2}\]


special values

\(L(0)=0\)

\(L(1)=\frac{\pi^2}{6}\)

\(L(-1)=-\frac{\pi^2}{12}\)

\(L(\frac{1}{2})=\frac{\pi^2}{12}\)

\(L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}\)

\(L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}\)

  • non-unitary \(c(2,k+2)\) minimal models

\[\sum_{i=1}^{[k/2]}L\left(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}}\right)=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}\]


역사



메모

관련된 항목들



매스매티카 파일 및 계산 리소스




사전 형태의 자료



관련논문

관련도서