"부정적분의 초등함수 표현(Integration in finite terms)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | + | '''간단한 소개''' | |
5번째 줄: | 5번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">상위 주제</h5> | + | (정리 ) 리우빌, 1835 |
+ | |||
+ | (a) <math>F</math>가 <math>x,y_1,\cdots,y_m</math>의 대수적함수이 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">'''상위 주제'''</h5> | ||
2009년 8월 16일 (일) 14:35 판
간단한 소개
(정리 ) 리우빌, 1835
(a) \(F\)가 \(x,y_1,\cdots,y_m\)의 대수적함수이
상위 주제
하위페이지
재미있는 사실
역사
[[수학사연표 (역사)|]]
관련된 다른 주제들
표준적인 도서 및 추천도서
- Integration in finite terms: Liouville's theory of elementary methods
- Joseph Fels Ritt
위키링크
참고할만한 자료
- The Problem of Integration in Finite Terms
- Robert H. Risch, Transactions of the American Mathematical Society, Vol. 139, (May, 1969), pp. 167-189
- Integration in Finite Terms
- Maxwell Rosenlicht, The American Mathematical Monthly, Vol. 79, No. 9 (Nov., 1972), pp. 963-972
- Integration in Finite Terms: The Liouville Theory
- Toni Kasper, Mathematics Magazine, Vol. 53, No. 4 (Sep., 1980), pp. 195-201
- An Invitation to Integration in Finite Terms
- Elena Anne Marchisotto and Gholam-Ali Zakeri, The College Mathematics Journal, Vol. 25, No. 4 (Sep., 1994), pp. 295-308
- From analytic to algebraic methods. Liouville’s approach to integration in finite terms
- Jesper Lützen, NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, Volume 2, Number 1 / 1994년 12월
- Integration in elementary terms
- On solvability and unsolvability of equations in explicit form
- A G Khovanskii, Russian Math. Surveys 2004, 59 (4), 661-736