"수소 원자의 스펙트럼과 슈뢰딩거 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 수소 원자와 슈뢰딩거 방정식로 바꾸었습니다.)
7번째 줄: 7번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
3차원에의 쿨롱 포텐셜<br><math>V(r) = -\frac{k e^2}{r}= -\frac{k e^2}{\sqrt{x^2+y^2+z^2}</math><br>
+
3차원에서의 쿨롱 포텐셜<br><math>V(r) = -\frac{k e^2}{r}= -\frac{k e^2}{\sqrt{x^2+y^2+z^2}}</math><br>
* [[슈뢰딩거 방정식]] 을 쓰면,<br><math>E \psi_{E} = -\frac{\hbar^2}{2m}(\frac{\partial^2 \psi_{E}}{\partial x^2}+\frac{\partial^2 \psi_{E}}{\partial y^2}+\frac{\partial^2 \psi_{E}}{\partial z^2}) + V(x,y,z)\psi_{E}</math><br><math>E \psi_{E} = -\frac{\hbar^2}{2m}(\frac{\partial^2 \psi_{E}}{\partial x^2}+\frac{\partial^2 \psi_{E}}{\partial y^2}+\frac{\partial^2 \psi_{E}}{\partial z^2}) + V(x,y,z)\psi_{E}</math><br>  <br>  <br>
+
* [[슈뢰딩거 방정식]] 을 쓰면,<br><math>E \psi_{E} = -\frac{\hbar^2}{2m}(\frac{\partial^2 \psi_{E}}{\partial x^2}+\frac{\partial^2 \psi_{E}}{\partial y^2}+\frac{\partial^2 \psi_{E}}{\partial z^2}) + V(x,y,z)\psi_{E}</math><br><math>E \psi_{E} = -\frac{\hbar^2}{2m}(\frac{\partial^2 \psi_{E}}{\partial x^2}+\frac{\partial^2 \psi_{E}}{\partial y^2}+\frac{\partial^2 \psi_{E}}{\partial z^2}) -\frac{k e^2}{\sqrt{x^2+y^2+z^2}}\psi_{E}</math><br>
 +
* 보어의 수소원자모형을 수학적으로 설명한다
 +
* 스핀의 존재는 슈뢰딩거 방정식으로 설명되지 않는다
  
 
 
 
 
63번째 줄: 65번째 줄:
 
<h5>사전 형태의 자료</h5>
 
<h5>사전 형태의 자료</h5>
  
 +
*  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/

2012년 3월 4일 (일) 11:15 판

이 항목의 수학노트 원문주소

 

 

개요
  • 3차원에서의 쿨롱 포텐셜
    \(V(r) = -\frac{k e^2}{r}= -\frac{k e^2}{\sqrt{x^2+y^2+z^2}}\)
  • 슈뢰딩거 방정식 을 쓰면,
    \(E \psi_{E} = -\frac{\hbar^2}{2m}(\frac{\partial^2 \psi_{E}}{\partial x^2}+\frac{\partial^2 \psi_{E}}{\partial y^2}+\frac{\partial^2 \psi_{E}}{\partial z^2}) + V(x,y,z)\psi_{E}\)
    \(E \psi_{E} = -\frac{\hbar^2}{2m}(\frac{\partial^2 \psi_{E}}{\partial x^2}+\frac{\partial^2 \psi_{E}}{\partial y^2}+\frac{\partial^2 \psi_{E}}{\partial z^2}) -\frac{k e^2}{\sqrt{x^2+y^2+z^2}}\psi_{E}\)
  • 보어의 수소원자모형을 수학적으로 설명한다
  • 스핀의 존재는 슈뢰딩거 방정식으로 설명되지 않는다

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서