"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
72번째 줄: 72번째 줄:
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and Adrien-Marie Legendre prove Fermat's Last Theorem for <em style="">n</em> = 5,
+
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and 르장드르가 <em style="">n</em> = 5인 경우에
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
153번째 줄: 153번째 줄:
 
* [http://en.wikipedia.org/wiki/1965 1965] - [http://en.wikipedia.org/wiki/James_Cooley James Cooley] and [http://en.wikipedia.org/wiki/John_Tukey John Tukey] present an influential [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1965 1965] - [http://en.wikipedia.org/wiki/James_Cooley James Cooley] and [http://en.wikipedia.org/wiki/John_Tukey John Tukey] present an influential [http://en.wikipedia.org/wiki/Fast_Fourier_Transform Fast Fourier Transform] algorithm,
 
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/w/index.php?title=E.J._Putzer&action=edit&redlink=1 E.J. Putzer] presents two methods for computing the [http://en.wikipedia.org/wiki/Matrix_exponential exponential of a matrix] in terms of a polynomial in that matrix,
 
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/w/index.php?title=E.J._Putzer&action=edit&redlink=1 E.J. Putzer] presents two methods for computing the [http://en.wikipedia.org/wiki/Matrix_exponential exponential of a matrix] in terms of a polynomial in that matrix,
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/wiki/Abraham_Robinson Abraham Robinson] presents [http://en.wikipedia.org/wiki/Non-standard_analysis Non-standard analysis]. [[#]]
+
* [http://en.wikipedia.org/wiki/1966 1966] - [http://en.wikipedia.org/wiki/Abraham_Robinson Abraham Robinson] presents [http://en.wikipedia.org/wiki/Non-standard_analysis Non-standard analysis]. [[베이커의 정리]].
 
* [http://en.wikipedia.org/wiki/1967 1967] - [http://en.wikipedia.org/wiki/Robert_Langlands Robert Langlands] formulates the influential [http://en.wikipedia.org/wiki/Langlands_program Langlands program] of conjectures relating number theory and representation theory,
 
* [http://en.wikipedia.org/wiki/1967 1967] - [http://en.wikipedia.org/wiki/Robert_Langlands Robert Langlands] formulates the influential [http://en.wikipedia.org/wiki/Langlands_program Langlands program] of conjectures relating number theory and representation theory,
 
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators],
 
* [http://en.wikipedia.org/wiki/1968 1968] - [http://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah] and [http://en.wikipedia.org/wiki/Isadore_Singer Isadore Singer] prove the [http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem Atiyah-Singer index theorem] about the index of [http://en.wikipedia.org/wiki/Elliptic_operator elliptic operators],

2009년 9월 18일 (금) 16:39 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상