"순환군"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
*  하나의 원소로 생성될 수 있는 군을 순환군(cyclic group)이라 함. 즉 모든 원소가 한 원소의 적당한 정수제곱으로 표현가능한 경우를 말함.<br>
 
*  하나의 원소로 생성될 수 있는 군을 순환군(cyclic group)이라 함. 즉 모든 원소가 한 원소의 적당한 정수제곱으로 표현가능한 경우를 말함.<br>
** <math>(\mathbb Z,+)</math> 의 경우는 1로 모든 원소를 생성가능.
+
** <math>(\mathbb Z,+)</math> 의 경우는 1로 모든 원소를 생성가능하므로, 순환군임.
 +
** 2차원 평면의 정n각형에 대한 n개의 회전변환은 순환군임.
 +
** <math>z^n=1</math> 를 만족시키는 n개의 복소수들은 곱셈에 대하여 순환군이 됨<br>
 +
*** <math>\zeta=e^{2\pi i \over n</math> 으로 생성가능.
 +
**  
  
 
 
 
 

2009년 4월 9일 (목) 16:11 판

간단한 소개
  • 하나의 원소로 생성될 수 있는 군을 순환군(cyclic group)이라 함. 즉 모든 원소가 한 원소의 적당한 정수제곱으로 표현가능한 경우를 말함.
    • \((\mathbb Z,+)\) 의 경우는 1로 모든 원소를 생성가능하므로, 순환군임.
    • 2차원 평면의 정n각형에 대한 n개의 회전변환은 순환군임.
    • \(z^n=1\) 를 만족시키는 n개의 복소수들은 곱셈에 대하여 순환군이 됨
      • \(\zeta=e^{2\pi i \over n\) 으로 생성가능.
    •  

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상