"숫자 67"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/8645914">숫자 에세이</a>페이지로 이동하였습니다.)
9번째 줄: 9번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
* 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math>의  [[수체의 class number|class number]] 1이 된다
+
* 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math>의  [[수체의 class number|class number]] 는 1이다
 
* <math>\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]</math> 는 UFD 이다
 
* <math>\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]</math> 는 UFD 이다
 
* 소수이며, 비정규소수이다
 
* 소수이며, 비정규소수이다
34번째 줄: 34번째 줄:
 
*  다항식 <math>x^2+x+17</math>은 정수 <math>0\leq x \leq 15</math>에서 소수가 된다<br> 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257<br>
 
*  다항식 <math>x^2+x+17</math>은 정수 <math>0\leq x \leq 15</math>에서 소수가 된다<br> 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257<br>
 
* <math>x=16</math>일 때는 <math>289=17^2</math>로 소수가 아니다
 
* <math>x=16</math>일 때는 <math>289=17^2</math>로 소수가 아니다
* [http://www.wolframalpha.com/input/?i=Table%5Bx%5E2+x+17,%7Bx,0,15%7D%5D ][http://www.wolframalpha.com/input/?i=Table%5Bx%5E2+x+17,%7Bx,0,15%7D%5D http://www.wolframalpha.com/input/?i=Table[x^2+x+17,{x,0,15}]]
+
* [http://www.wolframalpha.com/input/?i=Table%5Bx%5E2%2Bx%2B17%2C%7Bx%2C0%2C15%7D%5D http://www.wolframalpha.com/input/?i=Table[x^2%2Bx%2B17%2C{x%2C0%2C15}]]
 
* [[오일러의 소수생성다항식 x²+x+41|오일러의 소수생성다항식 x² +x+41]] 항목 참조
 
* [[오일러의 소수생성다항식 x²+x+41|오일러의 소수생성다항식 x² +x+41]] 항목 참조
  
61번째 줄: 61번째 줄:
  
 
* 정의에 대해서는 [[정규소수 (regular prime)]] 항목 참조
 
* 정의에 대해서는 [[정규소수 (regular prime)]] 항목 참조
 
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 

2012년 5월 26일 (토) 17:46 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-67})\)의  class number 는 1이다
  • \(\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]\) 는 UFD 이다
  • 소수이며, 비정규소수이다

 

 

class number 1
  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-d})\) 가 class number 1인 경우는 다음 9가지가 있다
    • \(d=1,2,3,7,11,19,43,67,163\)
  • 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
  • 가우스의 class number one 문제 항목 참조

 

 

오일러의 소수생성다항식

 

 

라마누잔 수

 

 

 

비정규소수
  • 67은 세번째로 작은 비정규소수
  • 베르누이 수
    \(B_{58}=\frac{84483613348880041862046775994036021}{354}\)
  • 67은 \(B_{58}\)의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그