"슈바르츠 삼각형 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">예</h5>
+
<h5>예</h5>
  
 
+
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
 
 
 
 
  
 
 
 
 

2012년 5월 19일 (토) 02:59 판

이 항목의 스프링노트 원문주소

 

 

개요
  • automorphic 함수
  • 슈워츠 삼각형 함수라고도 불림
  • 세 파라메터 a,b,c에 대한 초기하 미분방정식의 일차독립인 두 해의 비율로 얻어지는 함수
  • \(\alpha=1-c,\beta=b-a,\gamma=c-a-b\) 로 두면, 상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형으로 보낸다
  • 역함수를 슈워츠 s-함수라 한다
  • 맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록 의 연구에서 중요한 역할

 

 

\(s(z)=\frac{z^{1-c}\,_2F_1(a',b';c';z)}{\,_2F_1(a,b;c;z)}=\frac{z^{1-c}\,_2F_1(a-c+1,b-c+1;2-c;z)}{\,_2F_1(a,b;c;z)}\)

\(a'=a-c+1\), \(b'=b-c+1\), \(c'=2-c\)

 

 

 

 

역사

 

 

 

메모

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서