5차방정식과 정이십면체
둘러보기로 가기
검색하러 가기
개요
정이십면체 뫼비우스 변환군의 불변량
- 정이십면체 뫼비우스 변환군
- vertex points
- \(V=F_ 1=z_ 1z_ 2(z_ 1^{10}+11z_ 1^5z_ 2^5-z_ 2^{10})\)
- face points
- \(F=F_ 2=-(z_ 1^{20}+z_ 2^{20})+228(z_ 1^{15}z_ 2^{5}-z_ 1^{5}z_ 2^{15})-494z_ 1^{10}z_ 2^{10}\)
- edge points
- \(E=F_ 3=(z_ 1^{30}+z_ 2^{30})+522(z_ 1^{25}z_ 2^{5}-z_ 1^{5}z_ 2^{25})-10005(z_ 1^{20}z_ 2^{10}+z_ 1^{10}z_ 2^{20})\)
- syzygy relation\[1728F_ 1^5-F_ 2^3-F_ 3^2=0\] 또는 \(1728V^5-E^2-F^3=0\)
Tschirnhaus transformation
- Tschirnhaus transformation 을 이용하여 일반적인 5차방정식 \(x^5+Ax^4+Bx^3+Cx^2+Dx+E=0\) 을 principal quintic 즉, \(z^5+5az^2+5bz+c=0\) 형태로 바꿀 수 있다
정이십면체 방정식과 초기하급수 해
- 정이십면체 방정식(icosahedral equation)\[w=\frac{V (z)^{5}}{E (z)^{2}}=\frac{z^{5}(z^{10}+11z^5-1)^{5}}{((z^{30}+1)+522(z^{25}-z^{5})-10005(z^{20}+z^{10}))^{2}}\] 다시 쓰면, \[z^5 \left(z^{10}+11 z^5-1\right)^5-w \left(z^{30}+522 \left(z^{25}-z^5\right)-10005 \left(z^{20}+z^{10}\right)+1\right)^2=0\] 또는 \[w z^{60}+1044 w z^{55}+252474 w z^{50}+\cdots =0\]
- 이 60차방정식의 해는 초기하급수를 사용하여 표현할 수 있다\[z=\frac{\, _ 2F_ 1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};1728 w \right)}{w^{1/5} \, _ 2F_ 1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};1728 w \right)}\]
슈바르츠 삼각형 함수
- 초기하 미분방정식(Hypergeometric differential equations)\[z (1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\]
- 슈바르츠 삼각형 함수 (s-함수)\[s(z)=\frac{z^{1-c}\,_ 2F_ 1(a',b';c';z)}{\,_ 2F_ 1(a,b;c;z)}=\frac{z^{1-c}\,_ 2F_ 1(a-c+1,b-c+1;2-c;z)}{\,_ 2F_ 1(a,b;c;z)}\]
- \(\alpha=1-c,\beta=b-a,\gamma=c-a-b\) 로 두면, 상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형인 경우가 된다
- \(\alpha=1/5, \beta=1/2, \gamma=1/3\) 로 두면, \(a=-1/60,b=29/60,c=4/5\) 를 얻는다
- \(a=-1/60,b=29/60,c=4/5\) 를 이용하면,\[\frac{Z^{1/5}\,_ 2F_ 1(11/60,41/60;6/5;Z)}{\,_ 2F_ 1(-1/60,29/60;4/5;Z)}\]
역사
- http://library.wolfram.com/examples/quintic/timeline.html
- 1824 - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. 5차방정식의 근의 공식과 아벨의 증명 참조
- 1858 - 에르미트와 크로네커가 타원함수를 이용하여 오차방정식의 해를 구함
- 1877 - 클라인이 '정이십면체와 오차방정식 강의' 를 출판하고, 일반적인 오차방정식의 해를 초기하급수를 이용하여 표현함
- 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
- Mathematical Problems
- Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert
But it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.
메모
- Nagano, Atsuhira. “Icosahedral Invariants and Shimura Curves.” arXiv:1504.07498 [math], April 28, 2015. http://arxiv.org/abs/1504.07498.
- Nagano, Atsuhira. “Icosahedral Invariants, CM Points and Class Fields.” arXiv:1504.07500 [math], April 28, 2015. http://arxiv.org/abs/1504.07500.
- Trott, M. "Solution of Quintics with Hypergeometric Functions." §3 .13 in The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2005.http://books.google.com/books?id=3OtUpdFiXvkC&pg=PA1111&dq=icosahedron+and+quintic+mathematica&hl=ko&sa=X&ei=PMUIT4iUMqSLiAKtqaGNCQ&ved=0CDEQ6AEwAA # v=onepage&q=icosahedron %20 and %20 quintic %20 mathematica&f=false
- Solving the Quintic with Mathematica
- http://books.google.com/books?id=txinPHIegGgC&pg=PA86&lpg=PA86&dq=icosahedral+equation+hypergeometric&source=bl&ots=moFmb96tvZ&sig=-_Ge7VpPR8mycWMJBZpcthe59cY&hl=en&sa=X&ei=gdMIT_nuB5LUiAKS4pGSCQ&ved=0CDEQ6AEwAg # v=onepage&q=icosahedral %20 equation %20 hypergeometric&f=false
관련된 항목들
- 슈바르츠 삼각형 함수 (s-함수)
- 일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명
- 뫼비우스 변환군과 기하학
- 구면기하학
- 입체사영 (stereographic projection)
- 로저스-라마누잔 연분수
매스매티카 파일 및 계산 리소스
사전형태의 자료
관련도서
- Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree
- Felix Klein, Part II. chapter III.
- Geometry of the Quintic
- Jerry Shurman
- 위 클라인 책의 일부 내용이 학부생들도 충분히 접근할 수 있도록 잘 쓰여짐.
- Bruce King, Beyond the Quartic Equation
- Finite Möbius groups, minimal immersions of spheres, and moduli
- Gabor Toth, 66p
관련논문
- Crass, Scott. 2014. “Dynamics of a Soccer Ball.” arXiv:1404.3170 [math], April. http://arxiv.org/abs/1404.3170.
- Yang, Lei. 2004. “Hessian Polyhedra, Invariant Theory and Appell Hypergeometric Partial Differential Equations.” arXiv:math/0412065,
- Crass, Scott. 1999. “Solving the Quintic by Iteration in Three Dimensions.” arXiv:math/9903054, March. http://arxiv.org/abs/math/9903054.
- Doyle, Peter, and Curt McMullen. 1989. “Solving the Quintic by Iteration.” Acta Mathematica 163 (1): 151–80. doi:10.1007/BF02392735.
- J-P. Serre, Extensions icosaédriques (pdf), Oeuvres III, p .550-554 (no. 123 (1980)), Springer, 1986
관련링크와 웹페이지
- http://library.wolfram.com/examples/quintic/main.html
- http://mathworld.wolfram.com/IcosahedralEquation.html
블로그
메타데이터
위키데이터
- ID : Q2386216
Spacy 패턴 목록
- [{'LOWER': 'bring'}, {'LEMMA': 'radical'}]
- [{'LEMMA': 'ultraradical'}]