"슈바르츠 삼각형 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 
*  해는 [[오일러-가우스 초기하함수2F1]] 으로 표현된다<br>
 
*  해는 [[오일러-가우스 초기하함수2F1]] 으로 표현된다<br>
 +
*  슈바르츠 s-함수는 다음과 같이 쓸 수 있다<br><math>s(z)=\frac{z^{1-c}\,_2F_1(a',b';c';z)}{\,_2F_1(a,b;c;z)}=\frac{z^{1-c}\,_2F_1(a-c+1,b-c+1;2-c;z)}{\,_2F_1(a,b;c;z)}</math><br><math>a'=a-c+1</math>, <math>b'=b-c+1</math>, <math>c'=2-c</math><br>
  
 
 
 
 
  
<math>s(z)=\frac{z^{1-c}\,_2F_1(a',b';c';z)}{\,_2F_1(a,b;c;z)}=\frac{z^{1-c}\,_2F_1(a-c+1,b-c+1;2-c;z)}{\,_2F_1(a,b;c;z)}</math>
+
 
  
<math>a'=a-c+1</math>, <math>b'=b-c+1</math>, <math>c'=2-c</math>
+
<h5>special values</h5>
 +
 
 +
* <math>s(0)=0</math><br>
 +
* <math>s(1)=\frac{\Gamma (2-c) \Gamma (c-a) \Gamma (c-b)}{\Gamma (1-a) \Gamma (1-b) \Gamma (c)}</math><br>
 +
* <math>s(\infty)=\frac{e^{i \pi  (1-c)}\Gamma (b) \Gamma (c-a) \Gamma (2-c)}{\Gamma (c) \Gamma (b-c+1) \Gamma (1-a)}</math><br>
  
 
 
 
 
39번째 줄: 44번째 줄:
  
 
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
 
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
 
 
* <math>\alpha=1/5, \beta=1/2, \gamma=1/3</math> 로 두면, <math>a=-1/60,b=29/60,c=4/5</math> 를 얻는다<br>
 
* <math>\alpha=1/5, \beta=1/2, \gamma=1/3</math> 로 두면, <math>a=-1/60,b=29/60,c=4/5</math> 를 얻는다<br>
* <math>a=-1/60,b=29/60,c=4/5</math> 를 이용하면,<br><math>s(z)=\frac{z^{1/5} \, _2F_1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};z\right)}{\, _2F_1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};z\right)}</math><br><math>s(1)=\frac{\Gamma \left(\frac{19}{60}\right) \Gamma \left(\frac{49}{60}\right) \Gamma \left(\frac{6}{5}\right)}{\Gamma \left(\frac{31}{60}\right) \Gamma \left(\frac{4}{5}\right) \Gamma \left(\frac{61}{60}\right)}</math><br>
+
* <math>a=-1/60,b=29/60,c=4/5</math> 를 이용하면,<br><math>s(z)=\frac{z^{1/5} \, _2F_1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};z\right)}{\, _2F_1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};z\right)}</math><br>
 +
*  삼각형의 꼭지점<br><math>s(0)=0</math><br><math>s(1)=\frac{\Gamma \left(\frac{19}{60}\right) \Gamma \left(\frac{49}{60}\right) \Gamma \left(\frac{6}{5}\right)}{\Gamma \left(\frac{31}{60}\right) \Gamma \left(\frac{4}{5}\right) \Gamma \left(\frac{61}{60}\right)}</math><br>  <br>  <br>
  
 
 
 
 

2012년 7월 24일 (화) 18:31 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

s함수의 초기하함수 표현

 

 

special values
  • \(s(0)=0\)
  • \(s(1)=\frac{\Gamma (2-c) \Gamma (c-a) \Gamma (c-b)}{\Gamma (1-a) \Gamma (1-b) \Gamma (c)}\)
  • \(s(\infty)=\frac{e^{i \pi (1-c)}\Gamma (b) \Gamma (c-a) \Gamma (2-c)}{\Gamma (c) \Gamma (b-c+1) \Gamma (1-a)}\)

 

 

  • 오차방정식과 정이십면체
  • \(\alpha=1/5, \beta=1/2, \gamma=1/3\) 로 두면, \(a=-1/60,b=29/60,c=4/5\) 를 얻는다
  • \(a=-1/60,b=29/60,c=4/5\) 를 이용하면,
    \(s(z)=\frac{z^{1/5} \, _2F_1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};z\right)}{\, _2F_1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};z\right)}\)
  • 삼각형의 꼭지점
    \(s(0)=0\)
    \(s(1)=\frac{\Gamma \left(\frac{19}{60}\right) \Gamma \left(\frac{49}{60}\right) \Gamma \left(\frac{6}{5}\right)}{\Gamma \left(\frac{31}{60}\right) \Gamma \left(\frac{4}{5}\right) \Gamma \left(\frac{61}{60}\right)}\)
     
     

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서