"앤드류스-고든 항등식(Andrews-Gordon identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
  
 
이 때, <math>N_j=n_j+\cdots+n_{k-1}</math>
 
이 때, <math>N_j=n_j+\cdots+n_{k-1}</math>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;"> </h5>
 +
 +
 
  
 
 
 
 

2010년 11월 26일 (금) 23:29 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

항등식

\(\sum_{n_1,\cdots,n_{k-1}\geq0}\frac{x^{N_1^2+\cdots+N_{k-1}^2+N_i+\cdots+N_{k-1}}}{(x)_{n_1}...(x)_{n_{k-1}}}=\prod_{r\neq 0,\pm i \pmod {2k+1}}\frac{1}{1-x^r} \)

이 때, \(N_j=n_j+\cdots+n_{k-1}\)

 

 

 

 

 

 

 

얻어지는 이차형식

 

\(n_{1}^{2}\)

\((n_{1}+n_{2})^{2}+n_{2}^{2}\)

\((n_{1}+n_{2}+n_{3})^{2}+(n_{2}+n_{3})^{2}+n_{3}^{2}\)

\((n_{1}+n_{2}+n_{3}+n_{4})^{2}+(n_{2}+n_{3}+n_{4})^{2}+(n_{3}+n_{4})^{2}+n_{4}^{2}\)

행렬은

\(\text{A=}\left( \begin{array}{ccccc} 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 4 & 4 & 4 \\ 2 & 4 & 6 & 6 & 6 \\ 2 & 4 & 6 & 8 & 8 \\ 2 & 4 & 6 & 8 & 10 \end{array} \right)\)

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그