"오일러-맥클로린 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5>간단한 소개</h5>
+
<h5>개요</h5>
  
 
* 수열의 합과 적분을 연결해주는 공식
 
* 수열의 합과 적분을 연결해주는 공식
  
 
+
<math>\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R</math>
  
<math>\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R</math>
+
여기서
  
 
<math>\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx</math>
 
<math>\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx</math>
20번째 줄: 20번째 줄:
  
 
<math>\frac{B_k}{k!}</math> 는 <math>\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}</math>
 
<math>\frac{B_k}{k!}</math> 는 <math>\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}</math>
 +
 +
<math>\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx-\frac{1}{2}(f(n)-f(0))+\frac{1}{12}(f'(n)-f'(0))-\frac{1}{720}(f^{(3)}(n)-f^{(3)}(0))+\frac{1}{30240}(f^{(5)}(n)-f^{(5)}(0))-\frac{1}{1209600}(f^{(7)}(n)-f^{(7)}(0))+\cdots</math>
  
 
 
 
 
  
<math>\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx-\frac{1}{2}(f(n)-f(0))+\frac{1}{12}(f'(n)-f'(0))-\frac{1}{720}(f^{(3)}(n)-f^{(3)}(0))+\frac{1}{30240}(f^{(5)}(n)-f^{(5)}(0))-\frac{1}{1209600}(f^{(7)}(n)-f^{(7)}(0))+\cdots</math>
+
 
  
 
 
 
 
45번째 줄: 47번째 줄:
 
* [[오일러상수, 감마]]
 
* [[오일러상수, 감마]]
 
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 
 
 
 
 
 
  
 
 
 
 
100번째 줄: 98번째 줄:
 
<h5>관련논문</h5>
 
<h5>관련논문</h5>
  
* Euler-Maclaurin summation formula ([[2637804/attachments/1168462|pdf]])<br>
+
* Euler-Maclaurin summation formula ([[2637804/attachments/1168462|pdf]]) , E. Hairer (Author), G. Wanner, From [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History], 160-169p
** E. Hairer (Author), G. Wanner
+
* [http://www.math.nmsu.edu/%7Edavidp/euler2k2.pdf Dances between continuous and discrete: Euler's summation formula] ,David J. Pengelley, in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003.
** From [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History], 160-169p
+
* [http://dx.doi.org/10.2307%2F2589145 An Elementary View of Euler's Summation Formula], Tom M. Apostol, <cite>[http://www.jstor.org/action/showPublication?journalCode=amermathmont The American Mathematical Monthly]</cite>, Vol. 106, No. 5 (May, 1999), pp. 409-418
* [http://www.math.nmsu.edu/%7Edavidp/euler2k2.pdf Dances between continuous and discrete: Euler's summation formula]<br>
+
* [http://www.jstor.org/stable/2690625 The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations] , Vito Lampret, <cite>Mathematics Magazine</cite>, Vol. 74, No. 2 (Apr., 2001), pp. 109-122
** David J. Pengelley
+
* [http://www.jstor.org/stable/2301097 An Euler Summation Formula] , Irwin Roman, <cite>The American Mathematical Monthly</cite>, Vol. 43, No. 1 (Jan., 1936), pp. 9-21
** in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003.
 
* [http://dx.doi.org/10.2307%2F2589145 An Elementary View of Euler's Summation Formula]<br>
 
** Tom M. Apostol
 
** <cite>[http://www.jstor.org/action/showPublication?journalCode=amermathmont The American Mathematical Monthly]</cite>, Vol. 106, No. 5 (May, 1999), pp. 409-418
 
* [http://www.jstor.org/stable/2690625 The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations]<br>
 
** Vito Lampret
 
** <cite>Mathematics Magazine</cite>, Vol. 74, No. 2 (Apr., 2001), pp. 109-122
 
* [http://www.jstor.org/stable/2301097 An Euler Summation Formula]<br>
 
** Irwin Roman
 
** <cite>The American Mathematical Monthly</cite>, Vol. 43, No. 1 (Jan., 1936), pp. 9-21
 
  
 
 
 
 

2011년 5월 1일 (일) 08:30 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 수열의 합과 적분을 연결해주는 공식

\(\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)

여기서

\(\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx\)

\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\)

\(\frac{B_k}{k!}\) 는 \(\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}\)

\(\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx-\frac{1}{2}(f(n)-f(0))+\frac{1}{12}(f'(n)-f'(0))-\frac{1}{720}(f^{(3)}(n)-f^{(3)}(0))+\frac{1}{30240}(f^{(5)}(n)-f^{(5)}(0))-\frac{1}{1209600}(f^{(7)}(n)-f^{(7)}(0))+\cdots\)

 

 

 

 

유용한 표현

\(\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)

단, \(f^{(-1)}(x)=\int f(x)\,dx\) 라고 쓰자.

 

 

응용

 

 

재미있는 사실
  • 오일러의 계산에 중요하게 활용되었다

 

 

관련된 고교수학 또는 대학수학

 

관련된 항목들

 

 

사전자료

 

 

관련도서

 

관련논문

 

 

블로그