"자연수의 약수의 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
20번째 줄: 20번째 줄:
 
 
 
 
  
<h5>성질</h5>
+
==성질</h5>
  
 
* 서로 소인 자연수 <math>m,n</math> 에 대하여, <math>\sigma(mn)=\sigma(m)\sigma(n)</math>
 
* 서로 소인 자연수 <math>m,n</math> 에 대하여, <math>\sigma(mn)=\sigma(m)\sigma(n)</math>
29번째 줄: 29번째 줄:
 
 
 
 
  
<h5>점화식</h5>
+
==점화식</h5>
  
 
(정리)
 
(정리)
92번째 줄: 92번째 줄:
 
 
 
 
  
<h5>20까지 자연수의 약수의 합 목록</h5>
+
==20까지 자연수의 약수의 합 목록</h5>
  
 
* <math>n</math>과 <math>\sigma(n)</math>의 값
 
* <math>n</math>과 <math>\sigma(n)</math>의 값
104번째 줄: 104번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
112번째 줄: 112번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
 
 
 
118번째 줄: 118번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
* [[아이젠슈타인 급수(Eisenstein series)]]
 
* [[아이젠슈타인 급수(Eisenstein series)]]
129번째 줄: 129번째 줄:
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스</h5>
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYjU3MGZjZGQtNGM0My00MjA5LTk1Y2YtMmFkZTg2ZWI1ZDAz&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYjU3MGZjZGQtNGM0My00MjA5LTk1Y2YtMmFkZTg2ZWI1ZDAz&sort=name&layout=list&num=50
157번째 줄: 157번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
171번째 줄: 171번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* [http://www.jstor.org/stable/2041430 Recurrences for the Sum of Divisors]<br>
 
* [http://www.jstor.org/stable/2041430 Recurrences for the Sum of Divisors]<br>
180번째 줄: 180번째 줄:
 
 
 
 
  
<h5>관련도서 및 추천도서</h5>
+
==관련도서 및 추천도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
194번째 줄: 194번째 줄:
 
 
 
 
  
<h5>관련기사</h5>
+
==관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
205번째 줄: 205번째 줄:
 
 
 
 
  
<h5>블로그</h5>
+
==블로그</h5>
  
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=

2012년 11월 1일 (목) 02:20 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 자연수 \(n\)에 대하여, 1부터 n까지의 양의 정수 중에 \(n\)의 약수인 수의 합
  • \(\sigma(n)\) 으로 나타냄
    \(\sigma(n)=\sum_{d|n}d\)
  • 더 일반적으로 \(n\)의 약수인 수의 \(r\)거듭제곱의 합도 정의 됨
    \(\sigma_r(n)=\sum_{d|n}d^r\)
  • 곱셈에 대하여 좋은 성질을 가짐
  • 분할수에 대한 연구에서 자연스럽게 등장함
  • 모듈라 형식(modular forms)인 아이젠슈타인 급수(Eisenstein series)의 계수로 나타남

 

 

==성질

  • 서로 소인 자연수 \(m,n\) 에 대하여, \(\sigma(mn)=\sigma(m)\sigma(n)\)
  • 소수 \(p\) 에 대하여,  \(\sigma(p^{k}) = \frac{p^{k+1}-1}{p-1}\)

 

 

==점화식

(정리)

\(\sigma(k)\)은 다음 공식을 만족한다.

\(k\)가 오각수가 아닌 경우

\(\sigma(k) =\sigma(k-1) + \sigma(k-2)-\sigma(k-5)-\sigma(k-7)+\sigma(k-12)+\sigma(k-15)-\sigma(k-22)+\cdots\)

\(k\)가 오각수 즉 \(k=\frac{j(3j\pm 1)}{2}\) 꼴로 주어진 경우

\(\sigma(k) + (-1)^{j}k =\sigma(k-1) + \sigma(k-2)-\sigma(k-5)-\sigma(k-7)+\sigma(k-12)+\sigma(k-15)-\sigma(k-22)+\cdots\)

 

(증명)

생성함수를 다음과 같이 두자.

\(A(x)=\sum_{n=1}^{\infty}\sigma(n)x^n\)

\(\sum_{m=1}^{\infty}\frac{mq^m}{1-q^m}=\sum_{m=1}^{\infty}{mq^m}(1+q^m+q^{2m}+\cdots)=\sum_{n=1}^{\infty}\sigma(n)q^n\) 이므로 \(A(x)=\sum_{m=1}^{\infty}\frac{mx^{m}}{1-x^{m}}\)임을 알 수 있다.

이제 오일러의 오각수정리(pentagonal number theorem)를 활용하자.

\(f(x)=\sum_{n=-\infty}^\infty (-1)^{n}x^{n(3n-1)/2}=\prod_{m=1}^\infty (1-x^m)\)

위의 우변에 로그미분을 취한 다음 \(-x\)를 곱하면,

\(-x\frac{f'(x)}{f(x)}=\sum_{m=1}^{\infty}\frac{mx^{m}}{1-x^{m}}=A(x)\)

따라서

\(A(x)f(x)=-xf'(x)\)를 얻는다. 

\(A(x)f(x)=(\sum_{n=1}^{\infty}\sigma(n)x^n)(1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots)\)  이므로

\(x^k\)의 계수는 \(\sigma(k)-(\sigma(k-1) + \sigma(k-2)-\sigma(k-5)-\sigma(k-7)+\sigma(k-12)+\sigma(k-15)-\sigma(k-22)+\cdots)\) 로 주어진다.

한편, 

\(-xf'(x)=\sum_{j=-\infty}^\infty (-1)^{j+1}\frac{j(3j-1)}{2}x^{j(3j-1)/2}\)  ■

 

  • 오각수가 아닌 경우의 예
    • \(\sigma(10)=18\)
    • \(\sigma(9) + \sigma(8)-\sigma(5)-\sigma(3)=13+15-6-4=18\)
    • \(\sigma(20)=42\)
    • \(\sigma(19) + \sigma(18)-\sigma(15)-\sigma(13)+\sigma(8)+\sigma(5)=20+39-24-14+15+6=42\)
  • 오각수인 경우의 예
    • \(\sigma(5)+5=6+5=11\)
    • \(\sigma(4) + \sigma(3)=7+4=11\)
    • \(\sigma(12)-12=28-12=16\)
    • \(\sigma(11) + \sigma(10)-\sigma(7)-\sigma(5)=12+18-8-6=16\)
  • 분할수의 점화식과의 유사성을 눈여겨볼 것
    \(p(k) =p(k-1) + p(k-2)-p(k-5)-p(k-7)+p(k-12)+p(k-15)-p(k-22)+\cdots\)

 

 

==20까지 자연수의 약수의 합 목록

  • \(n\)과 \(\sigma(n)\)의 값

1    1
2    3
3    4
4    7
5    6
6    12
7    8
8    15
9    13
10    18
11    12
12    28
13    14
14    24
15    24
16    31
17    18
18    39
19    20
20    42

 

 

==역사

 

 

==메모

 

 

==관련된 항목들

 

 

==매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역

 

 

==사전 형태의 자료

 

 

==관련논문

 

==관련도서 및 추천도서

 

 

==관련기사

 

 

==블로그