"클라우센 함수(Clausen function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
* [[클라우센 함수(Clausen function)]]<br>
 
* [[클라우센 함수(Clausen function)]]<br>
 +
 +
 
  
 
 
 
 
7번째 줄: 9번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
  
클라우센 함수<br><math>\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}</math><br>[[로그 사인 적분 (log sine integrals)]] 으로 일반화된다<br>  <br>
+
정의<br><math>\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}</math><br>
 +
 
 +
* [[로그 사인 적분 (log sine integrals)]] 으로 일반화된다<br>
 
* [[로바체프스키 함수]] 와의 관계<br><math>Cl_2(2\theta)=2\Lambda(\theta)</math><br>
 
* [[로바체프스키 함수]] 와의 관계<br><math>Cl_2(2\theta)=2\Lambda(\theta)</math><br>
 
 
 
  
 
 
 
 
69번째 줄: 71번째 줄:
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 +
 +
* [[트리감마 함수(trigamma function)]]<br>
  
 
 
 
 

2010년 7월 17일 (토) 23:19 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 정의
    \(\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\)

 

 

 

dilogarithm 함수와의 관계
  • dilogarithm 함수는 복소수 \(|z|<1\)에 대하여 다음과 같이 정의됨
  • \(\operatorname{Li}_2(z)= \sum_{n=1}^\infty {z^n \over n^2}\)
    \(|z|\leq 1\) 에서 고르게 수렴하는 급수이므로, \(|z|\leq 1\)에서 연속
  • \(z=e^{i\theta}\), \(0 \leq \theta \leq 2\pi\) 일때
    \(\operatorname{Li}_2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}\)
    \(\mathfrak{I}(\operatorname{Li}_2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_2(\theta)\)

 

 

 

special values

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

\(\int_{0}^{\pi/3}\operatorname{Cl}_2(x)\,dx=\frac{2}{3}\zeta(3)\)

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그